Skip to content

Latest commit

 

History

History
263 lines (226 loc) · 14.4 KB

README.md

File metadata and controls

263 lines (226 loc) · 14.4 KB

TrafficAssign.jl

TrafficAssign is a Julia package for…

  1. Load Transportation Networks data or construct traffic data from data frames.
  2. Traffic assignment with User Equilibrium.

Load traffic data

load_tntp() loads Transportation Networks data (TNTP format).

Traffic() creates traffic data from trip and network data frames.

using TrafficAssign

traffic = load_tntp("Anaheim")
Number of nodes: 416
Trips:
1406×3 DataFrame
  Row │ orig   dest   trips
      │ Int64  Int64  Float64
──────┼───────────────────────
    1 │     1      2   1365.9
    2 │     1      3    407.4
    3 │     1      4    861.4
    4 │     1      5    354.4
    5 │     1      6    545.1
    6 │     1      7    431.5
    7 │     1      8      1.0
    8 │     1      9     56.8
  ⋮   │   ⋮      ⋮       ⋮
 1400 │    38     31     84.2
 1401 │    38     32     25.1
 1402 │    38     33     24.6
 1403 │    38     34     31.1
 1404 │    38     35     21.4
 1405 │    38     36     19.1
 1406 │    38     37      2.3
             1391 rows omitted

Network:
914×8 DataFrame
 Row │ from   to     free_flow_time  capacity  alpha    beta     toll     leng ⋯
     │ Int64  Int64  Float64         Float64   Float64  Float64  Float64  Floa ⋯
─────┼──────────────────────────────────────────────────────────────────────────
   1 │     1    117         1.09046    9000.0     0.15      4.0      0.0   528 ⋯
   2 │     2     87         1.09046    9000.0     0.15      4.0      0.0   528
   3 │     3     74         1.09046    9000.0     0.15      4.0      0.0   528
   4 │     4    233         1.09046    9000.0     0.15      4.0      0.0   528
   5 │     5    165         1.09046    9000.0     0.15      4.0      0.0   528 ⋯
   6 │     6    213         1.09046    9000.0     0.15      4.0      0.0   528
   7 │     7    253         1.09046    9000.0     0.15      4.0      0.0   528
   8 │     8    411         1.0        5400.0     0.15      4.0      0.0   264
  ⋮  │   ⋮      ⋮          ⋮            ⋮         ⋮        ⋮        ⋮        ⋮ ⋱
 908 │   413    404         2.0        5400.0     0.15      4.0      0.0   528 ⋯
 909 │   414     22         1.0        5400.0     0.15      4.0      0.0   264
 910 │   414    405         2.0        5400.0     0.15      4.0      0.0   528
 911 │   415     22         1.0        5400.0     0.15      4.0      0.0   264
 912 │   415    406         2.0        5400.0     0.15      4.0      0.0   528 ⋯
 913 │   416     23         1.0        5400.0     0.15      4.0      0.0   264
 914 │   416    407         2.0        5400.0     0.15      4.0      0.0   528
                                                   1 column and 899 rows omitted

Traffic assignment

assign_traffic() solves traffic assignment problems. By default, the BiconjugateFrankWolfe() algorithm is used.

res = assign_traffic(traffic)
Start Execution
Iteration:       1, Objective: 1291920.701, Relative-Gap: 0.025317752, Execution-Time:      0.281
Iteration:       2, Objective: 1287896.059, Relative-Gap: 0.002939095, Execution-Time:      0.813
Iteration:       3, Objective: 1287174.480, Relative-Gap: 0.002377171, Execution-Time:      0.899
Iteration:       4, Objective: 1286261.622, Relative-Gap: 0.001157943, Execution-Time:      0.946
Iteration:       5, Objective: 1286219.627, Relative-Gap: 0.000541186, Execution-Time:      1.221
Iteration:       6, Objective: 1286196.674, Relative-Gap: 0.000523331, Execution-Time:      1.252
Iteration:       7, Objective: 1286137.001, Relative-Gap: 0.000476912, Execution-Time:      1.315
Iteration:       8, Objective: 1286082.018, Relative-Gap: 0.000161641, Execution-Time:      1.365
Iteration:       9, Objective: 1286073.753, Relative-Gap: 0.000144621, Execution-Time:      1.417
Iteration:      10, Objective: 1286053.650, Relative-Gap: 0.000091432, Execution-Time:      1.449

TrafficAssign.TrafficAssignResults(TrafficImpl(416, [1, 2, 3, 4, 5, 6, 7, 8, 9, 9  …  412, 412, 413, 413, 414, 414, 415, 415, 416, 416], [117, 87, 74, 233, 165, 213, 253, 411, 379, 395  …  21, 402, 21, 404, 22, 405, 22, 406, 23, 407], sparse([2, 3, 4, 5, 6, 7, 8, 9, 10, 11  …  28, 29, 30, 31, 32, 33, 34, 35, 36, 37], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1  …  38, 38, 38, 38, 38, 38, 38, 38, 38, 38], [1171.2, 721.1, 1222.5, 243.4, 637.4, 682.3, 44.3, 198.6, 12.3, 35.8  …  42.1, 16.6, 128.1, 87.1, 54.0, 47.9, 234.6, 63.8, 41.3, 6.0], 416, 416), Graphs.SimpleGraphs.SimpleDiGraph{Int64}(914, [[117], [87], [74], [233], [165], [213], [253], [411], [379, 395], [338, 362]  …  [38, 53, 390, 408, 416], [211, 407, 409], [167, 408, 410], [396, 409, 411], [8, 410], [21, 402], [21, 404], [22, 405], [22, 406], [23, 407]], [[88], [62], [75], [234], [118], [166], [214], [411], [379, 395], [338, 362]  …  [38, 53, 390, 408, 416], [212, 407, 409], [168, 408, 410], [396, 409, 411], [8, 410], [21, 402], [21, 404], [22, 405], [22, 406], [23, 407]]), BPRImpl([1.090458488, 1.090458488, 1.090458488, 1.090458488, 1.090458488, 1.090458488, 1.090458488, 1.0, 1.0, 1.0  …  1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0], [1.090458488, 1.090458488, 1.090458488, 1.090458488, 1.090458488, 1.090458488, 1.090458488, 1.0, 1.0, 1.0  …  Inf, 2.0, Inf, 2.0, Inf, 2.0, Inf, 2.0, Inf, 2.0], [9000.0, 9000.0, 9000.0, 9000.0, 9000.0, 9000.0, 9000.0, 5400.0, 5400.0, 5400.0  …  5400.0, 5400.0, 5400.0, 5400.0, 5400.0, 5400.0, 5400.0, 5400.0, 5400.0, 5400.0], [0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15  …  0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15], [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0  …  4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [5280.0, 5280.0, 5280.0, 5280.0, 5280.0, 5280.0, 5280.0, 2640.0, 2640.0, 2640.0  …  2640.0, 5280.0, 2640.0, 5280.0, 2640.0, 5280.0, 2640.0, 5280.0, 2640.0, 5280.0])), [7074.9, 9662.5, 7669.000000000003, 12173.800000000003, 2586.7999999999984, 6576.600000000001, 7137.0999999999985, 722.0999999999997, 1317.8580762568981, 919.641923743101  …  564.0461041884911, 1396.4999999999998, 1495.8538958115087, 1245.3000000000002, 509.3999999999999, 619.8, 934.2, 904.5999999999998, 387.90000000000015, 1522.5], TrafficAssignLogs(1.2859360746767877e6, 1.2860536502344077e6, [1.2919207006261928e6, 1.2878960591928903e6, 1.2871744801439045e6, 1.2862616220919997e6, 1.2862196265185215e6, 1.286196673702687e6, 1.2861370010556476e6, 1.2860820184638724e6, 1.286073753071975e6, 1.2860536502344077e6], [0.025317752227496097, 0.002939095375328338, 0.002377171271697498, 0.0011579431276952786, 0.0005411859152905796, 0.0005233310815579923, 0.00047691214982615546, 0.00016164148263084357, 0.00014462108363500186, 9.14318836957612e-5], 1.659854130228e9, [0.28100013732910156, 0.812999963760376, 0.8990001678466797, 0.9460000991821289, 1.2209999561309814, 1.252000093460083, 1.315000057220459, 1.3650000095367432, 1.4170000553131104, 1.4490001201629639]))
# Get flow from traffic assignment results
res.flow

Traffic assignment algorithms

Now, the following algorithms are available.

  • FrankWolfe()
  • ConjugateFrankWolfe()
  • BiconjugateFrankWolfe()
  • RestrictedSimplicialDecomposition()
# Requires long execution time.
traffic = load_tntp("GoldCoast")

res_FW = assign_traffic(traffic, algorithm=FrankWolfe())
res_CFW = assign_traffic(traffic, algorithm=ConjugateFrankWolfe())
res_BFW = assign_traffic(traffic, algorithm=BiconjugateFrankWolfe())
res_RSD_5 = assign_traffic(traffic, algorithm=RestrictedSimplicialDecomposition(max_points=5))
# res_RSD_10 = assign_traffic(traffic, algorithm=RestrictedSimplicialDecomposition(max_points=10))

References