-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathview.py
55 lines (53 loc) · 2.06 KB
/
view.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#View
from django.shortcuts import render, HttpResponse
import json
import basestuff
from basestuff import *
import KsetEnum
from KsetEnum import *
from MDRC import MDRC
from MD import MDRRR
import MD
import HDRR
from time import time
#import twoD
import pandas as pd
folder = 'data/'
filename = 'yelp_business'
def index(request):
return render(request, "index.html")
def solve(request):
if request.method == 'POST':
if request.POST.get('lat', '') != '':
lat = float(request.POST.get('lat', ''))
lng = float(request.POST.get('lng', ''))
dst = float(request.POST.get("dst")) * 1.60934
columns = [6,7,8,9]
t = time()
dataset1 = pd.read_csv(folder+filename+'.csv', delimiter=',', header=0, on_bad_lines='skip');
minlat, maxlat, minlng, maxlng = basestuff.__get_area(lat, lng, dst)
dataset1 = dataset1.loc[(dataset1['latitude'] <= maxlat) & (dataset1['latitude'] >= minlat)
& (dataset1['longitude'] <= maxlng) & (dataset1['longitude'] >= minlng)]
genData(file=folder+filename+'.csv',pythonfile=False,cols=columns, lat=lat , lng=lng, dst=dst)
print("Dataset processing time:")
print(time()-t)
dataset = basestuff.dataset
r = 5;
gamma = 4;
setparams(dataset.shape[0], 3, K=5);
print("Businesses within the given area:")
print(dataset.shape[0])
#setparams(100, 3, K=5);
t = time()
S1 = MDRC()
print("Calculation time:")
print(time()-t)
print("The size of the subset:")
print(len(S1))
print("The index of the subset mapped in the dataset:")
print(S1)
dataset1 = dataset1.iloc[list(S1),1:]
dataset1 = dataset1.reset_index(drop=True)
js = dataset1.to_json(orient="index")
dataset1.to_csv("data\data2.csv", index=False)
return HttpResponse(js)