-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHDRR.py
184 lines (164 loc) · 4.89 KB
/
HDRR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import basestuff;
from basestuff import *;
#from sets import Set
infinity = 2; # regret-ratio is always less than 1. Thus this is infinity of that :D
M = None; # discretized matrix
F = None; # discretized functions
Mvals = None;
def Scalardiscretize(fs, m):
F = [];
portion = 1.0/fs;
v = [1 for i in range(m)];
while True:
f = [v[i]*portion for i in len(v)];
F.append(f);
i = 0;
while v[i] == fs:
v[i] = 1;
i += 1;
if i == m - 1: break;
if i == m - 1:
break;
v[i] += 1;
return F;
def Polardiscretize(fs, m):
theta = math.pi / (2 * (fs - 1));
v = [0 for i in range(m - 1)];
F = [];
while (True):
polar = [theta * v[i] for i in range(m - 1)];
#print polar;
r = 1;
f = [];
for j in range(m - 1, 0, -1):
f.insert(0, r * math.sin(polar[j - 1]));
r *= math.cos(polar[j - 1]);
f.insert(0, r);
F.append(f);
i = 0;
while v[i] == fs - 1:
v[i] = 0;
i += 1;
if i == m - 1: break;
if i == m - 1:
break;
v[i] += 1;
return F
def PolarRandomdiscretize(Fsize, m):
F = [];
for i in range(Fsize):
polar = np.random.rand(m-1)*math.pi/2;
#print polar;
r = 1;
f = [];
for j in range(m - 1, 0, -1):
f.insert(0, r * math.sin(polar[j - 1]));
r *= math.cos(polar[j - 1]);
f.insert(0, r);
F.append(f);
return F
'''
x = int(fs ** (1. / (m - 1)));
F = [];
theta = [];
alpha = math.pi * (m - 1) / (2 * (fs + m - 1));
for i in range(m - 1): theta.append(1);
for i in range(fs):
r = 1;
v = [];
for j in range(m - 1, 0, -1):
v.insert(0, r * math.cos(alpha * theta[j - 1]));
r *= math.sin(alpha * theta[j - 1]);
v.insert(0, r);
F.append(v);
j = 0;
while j < len(theta) and theta[j] == x:
theta[j] = 1;
j += 1;
if j < len(theta): theta[j] += 1;
# print F
'''
def constructM(fs,randomDesc=False):
global M;
#if basestuff.dataset_sky is None:
# print 'initiate the dataset'
# return
F = Polardiscretize(fs, basestuff.d) if randomDesc==False else PolarRandomdiscretize(fs, basestuff.d)
#print F
fs = len(F);
M = np.zeros(basestuff.n * fs).reshape(basestuff.n, fs);
cmax = np.zeros(fs);
for t in range(basestuff.n):
for f in range(fs):
ft = 0; # compute f(t)
for j in range(basestuff.d): ft += F[f][j] * basestuff.dataset[t][j]
M[t, f] = ft;
if ft > cmax[f]: cmax[f] = ft;
if basestuff.debugmod == 'on':
print(M)
#print M;
for t in range(basestuff.n): # convert the f(t) values to regret-ratio
for f in range(fs): M[t, f] = (cmax[f] - M[t, f]) / cmax[f] if cmax[f] > 0 else 0;
if basestuff.debugmod == 'on':
print(M)
return fs;
def oracle(M, epsilon):
MPrime = np.zeros(M.shape)
MPrime[:] = M
MPrime = MPrime <= epsilon
b = np.ascontiguousarray(MPrime).view(np.dtype((np.void, MPrime.dtype.itemsize * MPrime.shape[1])))
_, uniqueRows = np.unique(b, return_index=True)
# print uniqueRows
# MPrimeUnique = MPrime[uniqueRows]
items = set()
sets = {}
for row in uniqueRows:
sets[row] = set(np.where(MPrime[row, :] == True)[0])
items = items.union(sets[row])
# print items, sets
return greedySetCover(items, sets)
def greedySetCover(items, sets):
selectedSets = set([])
lentemp = []
while (len(items) > 0):
candidateSet = set()
candidateSetKey = -1
for s in sets:
if len(sets[s]) > len(candidateSet):
candidateSet = sets[s]
candidateSetKey = s
# selectedSets[candidateSetKey] = candidateSet
selectedSets.add(candidateSetKey +1 )
lentemp.append(len(candidateSet))
items = items.difference(candidateSet)
for s in list(sets.keys()):
sets[s] = sets[s].difference(candidateSet)
if len(sets[s]) == 0:
del sets[s]
return selectedSets, lentemp
def SortMvalues():
global Mvals, M;
Mvals = np.copy(M).reshape(-1);
Mvals = np.sort(Mvals);
#print Mvals
def DMM(r, fs,randomDesc=False):
#if basestuff.convexSet is not None and len(basestuff.convexSet) <= r:
# return basestuff.convexSet;
constructM(fs,randomDesc);
SortMvalues();
bestE = infinity;
best = None;
l = 0;
h = Mvals.size;
while (l < h):
mid = int((l + h) / 2)
R, tmp = oracle(M, Mvals[mid]);
#print Mvals[mid]
if len(R) <= r * math.log(r, 2):
best = R;
bestE = Mvals[mid];
h = mid - 1;
else:
l = mid + 1;
return best;
mi = i;