From b342b3d62c049a7f89088c76309a11b9870b912d Mon Sep 17 00:00:00 2001 From: Hong Ge <3279477+yebai@users.noreply.github.com> Date: Wed, 25 Oct 2023 20:59:46 +0100 Subject: [PATCH] Delete test/graphinfo directory (#86) * Delete test/graphinfo directory * Update runtests.jl --- test/graphinfo/graphinfo.jl | 122 ------------------------------------ test/runtests.jl | 1 - 2 files changed, 123 deletions(-) delete mode 100644 test/graphinfo/graphinfo.jl diff --git a/test/graphinfo/graphinfo.jl b/test/graphinfo/graphinfo.jl deleted file mode 100644 index 2d8e417..0000000 --- a/test/graphinfo/graphinfo.jl +++ /dev/null @@ -1,122 +0,0 @@ -using AbstractPPL -import AbstractPPL.GraphPPL:GraphInfo, Model, get_dag, set_node_value!, - get_node_value, get_sorted_vertices, get_node_eval, - get_nodekind, get_node_input, get_model_values, - set_model_values!, rand, rand!, logdensityof -using SparseArrays -using LinearAlgebra -using Distributions -using Random; Random.seed!(1234) - -## Example taken from Mamba -line = Dict{Symbol, Any}( - :x => [1, 2, 3, 4, 5], - :y => [1, 3, 3, 3, 5] -) - -line[:xmat] = [ones(5) line[:x]] - -# just making it a NamedTuple so that the values can be tested later. Constructor should be used as Model(;kwargs...). -model = ( - β = (zeros(2), () -> MvNormal(2, sqrt(1000)), :Stochastic), - xmat = (line[:xmat], () -> line[:xmat], :Logical), - s2 = (1.0, () -> InverseGamma(2.0,3.0), :Stochastic), - μ = (zeros(5), (xmat, β) -> xmat * β, :Logical), - y = (zeros(5), (μ, s2) -> MvNormal(μ, sqrt(s2)), :Stochastic) -) - -# better handling of stochastic and logical nodes. -# Automatically set logistic nodes initial values to their deterministic values. - -# construct the model! -m = Model(; zip(keys(model), values(model))...) # uses Model(; kwargs...) constructor - -# test the type of the model is correct -@test m isa Model -sorted_vertices = get_sorted_vertices(m) -@test m isa Model{Tuple(sorted_vertices)} -@test m.g isa GraphInfo <: AbstractModelTrace -@test m.g isa GraphInfo{Tuple(sorted_vertices)} - -# test the dag is correct -A = sparse([0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 1 1 0 0; 1 0 0 1 0]) -@test get_dag(m) == A - -@test length(m) == 5 -@test eltype(m) == valtype(m) - - -# check the values from the NamedTuple match the values in the fields of GraphInfo -vals, evals, kinds = AbstractPPL.GraphPPL.getvals(NamedTuple{Tuple(sorted_vertices)}(model)) -inputs = (s2 = (), xmat = (), β = (), μ = (:xmat, :β), y = (:μ, :s2)) - -for (i, vn) in enumerate(keys(m)) - @inferred m[vn] - @inferred get_node_value(m, vn) - @inferred get_node_eval(m, vn) - @inferred get_nodekind(m, vn) - @inferred get_node_input(m, vn) - - @test vn isa VarName - @test get_node_value(m, vn) == vals[i] - @test get_node_eval(m, vn) == evals[i] - @test get_nodekind(m, vn) == kinds[i] - @test get_node_input(m, vn) == inputs[i] -end - -for node in m - @test node isa NamedTuple{fieldnames(GraphInfo)[1:4]} -end - -# test Model constructor for model with single parent node -single_parent_m = Model(μ = (1.0, () -> 3, :Logical), y = (1.0, (μ) -> Normal(μ, sqrt(1)), :Stochastic)) -@test single_parent_m isa Model{(:μ, :y)} -@test single_parent_m.g isa GraphInfo{(:μ, :y)} - -# test setindex -@test_throws AssertionError set_node_value!(m, @varname(s2), [0.0]) -@test_throws AssertionError set_node_value!(m, @varname(s2), (1.0,)) -set_node_value!(m, @varname(s2), 2.0) -@test get_node_value(m, @varname s2) == 2.0 - -# test ErrorException for parent node not found -@test_throws ErrorException Model( μ = (1.0, (β) -> 3, :Logical), y = (1.0, (μ) -> Normal(μ, sqrt(1)), :Stochastic)) - -# test AssertionError thrown for kwargs with the wrong order of inputs -@test_throws AssertionError Model( μ = ((β) -> 3, 1.0, :Logical), y = (1.0, (μ) -> Normal(μ, sqrt(1)), :Stochastic)) - -# testing random + logdensityof -sample = rand(m) - -@test keys(sample) == Tuple(get_sorted_vertices(m)) - -for vn in keys(m) - mv = get_node_value(m, vn) - sv = get(sample, vn) - @test size(mv) == size(sv) - @test sv isa typeof(mv) -end - -model1 = Model(μ = (3.0, () -> 3.0, :Logical), - y = (0.0, (μ) -> Normal(μ, 1.0), :Stochastic)) - -priorsamples = rand(model1, 1000) - -@test mean([s.μ for s in priorsamples]) == 3 -@test mean([s.y for s in priorsamples]) ≈ 3 atol=2 - -@test logdensityof(model1, (μ = 3.0, y = 3.0)) == logdensityof(Normal(3.0,1.0), 3.0) - -model2 = Model(μ = (3.0, () -> 3.0, :Logical), - y1 = (0.0, (μ) -> Normal(μ, 1.0), :Stochastic), - y2 = (0.0, (μ) -> Normal(μ, 1.0), :Stochastic), - y3 = (0.0, (μ) -> Normal(μ, 1.0), :Stochastic)) - -model3 = Model(μ = (ones(3) * 3, () -> ones(3) * 3, :Logical), - y = (zeros(3), (μ) -> MvNormal(μ, I), :Stochastic)) - -ldmodel1 = logdensityof(model1, (μ = 3.0, y = 3.0)) -ldmodel2 = logdensityof(model2, (μ = 3.0, y3 = 3.0, y2 = 3.0, y1 = 3.0)) -ldmodel3 = logdensityof(model3, (μ = ones(3) * 3, y = ones(3) * 3)) - -@test 3 * ldmodel1 == ldmodel2 == ldmodel3 \ No newline at end of file diff --git a/test/runtests.jl b/test/runtests.jl index 3707090..eb97c36 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -14,7 +14,6 @@ using Test include("deprecations.jl") include("varname.jl") include("abstractprobprog.jl") - include("graphinfo/graphinfo.jl") @testset "doctests" begin DocMeta.setdocmeta!( AbstractPPL,