by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell.
This repository is for Understanding Convolution for Semantic Segmentation (WACV 2018), which achieved state-of-the-art result on the CityScapes, PASCAL VOC 2012, and Kitti Road benchmark.
We tested our code on:
Ubuntu 16.04, Python 2.7 with
MXNet (0.11.0), numpy(1.13.1), cv2(3.2.0), PIL(4.2.1), and cython(0.25.2)
-
Clone the repository:
git clone [email protected]:TuSimple/TuSimple-DUC.git python setup.py develop --user
-
Download the pretrained model from Google Drive.
-
Build MXNet (only tested on the TuSimple version):
git clone --recursive [email protected]:TuSimple/mxnet.git vim make/config.mk (we should have USE_CUDA = 1, modify USE_CUDA_PATH, and have USE_CUDNN = 1 to enable GPU usage.) make -j cd python python setup.py develop --user
For more MXNet tutorials, please refer to the official documentation.
-
Training:
cd train python train_model.py ../configs/train/train_cityscapes.cfg
The paths/dirs in the
.cfg
file need to be specified by the user. -
Testing
cd test python predict_full_image.py ../configs/test/test_full_image.cfg
The paths/dirs in the
.cfg
file need to be specified by the user. -
Results:
Modify the
result_dir
path in the config file to save the label map and visualizations. The expected scores are:(single scale testing denotes as 'ss' and multiple scale testing denotes as 'ms')
- ResNet101-DUC-HDC on CityScapes testset (mIoU): 79.1(ss) / 80.1(ms)
- ResNet152-DUC on VOC2012 (mIoU): 83.1(ss)
If you find the repository is useful for your research, please consider citing:
@article{wang2017understanding,
title={Understanding convolution for semantic segmentation},
author={Wang, Panqu and Chen, Pengfei and Yuan, Ye and Liu, Ding and Huang, Zehua and Hou, Xiaodi and Cottrell, Garrison},
journal={arXiv preprint arXiv:1702.08502},
year={2017}
}
Please contact [email protected] or [email protected] .