forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile.ci
87 lines (73 loc) · 2.75 KB
/
Dockerfile.ci
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# syntax=docker/dockerfile:experimental
ARG FROM_IMAGE_NAME
FROM $FROM_IMAGE_NAME as main
ENV DEBIAN_FRONTEND=noninteractive
RUN sed -i -e 's/^APT/# APT/' -e 's/^DPkg/# DPkg/' \
/etc/apt/apt.conf.d/docker-clean
RUN apt-get update && \
apt-get install -y --no-install-recommends gettext && \
apt-get clean
RUN wget https://github.com/mikefarah/yq/releases/download/v4.44.1/yq_linux_amd64 -O /usr/local/bin/yq && \
chmod a+x /usr/local/bin/yq
##### For Mamba begin #####
RUN pip uninstall -y triton && \
pip install triton==2.1.0
# The causal-conv1d and mamba-ssm packages below are built from scratch here
# (which takes significant time) because there are no wheels available on PyPI
# for these relatively newer versions of the packages that are compatible with
# the older NGC-variant PyTorch version (e.g. version 2.2.0.dev231106) that we
# are using (in the NGC base container). Generally, if the package is not
# compatible with the PyTorch version, then it will generate a Python import
# error. The package authors tend to only release wheels for new versions of
# these pacakges which are compatible with the versions of regular PyTorch and
# NGC-variant PyTorch that are newer at the time of release. So, to use newer
# versions of these packages with relatively older versions of the NGC PyTorch
# container, we tend to have to build the packages from scratch.
RUN cd /tmp && \
pip uninstall -y causal-conv1d && \
git clone https://github.com/Dao-AILab/causal-conv1d.git && \
cd causal-conv1d && \
git checkout v1.2.2.post1 && \
CAUSAL_CONV1D_FORCE_BUILD=TRUE pip install . && \
cd .. && \
rm -rf causal-conv1d
RUN cd /tmp && \
pip uninstall -y mamba-ssm && \
git clone https://github.com/state-spaces/mamba.git && \
cd mamba && \
git checkout v2.0.3 && \
MAMBA_FORCE_BUILD=TRUE pip install . && \
cd .. && \
rm -rf mamba
##### For Mamba end #####
##### For JET-API start #####
RUN apt-get install -y python3-venv && \
apt-get clean -y && \
python -m venv /opt/jet
##### For JET-API end #####
RUN pip3 install --no-cache-dir \
einops \
flask-restful \
nltk \
pytest \
pytest-cov \
pytest_mock \
pytest-random-order \
sentencepiece \
wrapt \
git+https://github.com/fanshiqing/[email protected] \
zarr \
tensorstore==0.1.45 \
wandb
COPY . /workspace/megatron-lm
COPY . /workspace/megatron-lm
RUN cp -r /workspace/megatron-lm /opt && \
pip install /opt/megatron-lm
##### For NVIDIANS only #####
FROM main as jet
ARG CACHEBUST=0
RUN --mount=type=secret,id=JET_INDEX_URLS \
JET_INDEX_URLS=$(cat /run/secrets/JET_INDEX_URLS) && \
/opt/jet/bin/pip install jet-api --upgrade $JET_INDEX_URLS
ENV PATH="$PATH:/opt/jet/bin"
###