forked from bghojogh/MDS-SammonMapping-Isomap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
230 lines (218 loc) · 11.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from my_classical_MDS import My_classical_MDS
from my_Sammon_mapping import My_Sammon_mapping
from Sammon_mapping import sammon
from my_Isomap import My_Isomap
from my_kernel_Isomap import My_kernel_Isomap
import numpy as np
import pickle
import os
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from PIL import Image
from skimage.transform import resize
def main():
#---- settings:
dataset = "MNIST" #--> MNIST, ORL_glasses
method = "MDS" #--> MDS, kernel_MDS, PCA, my_Sammon_mapping, Sammon_mapping, Isomap, kernel_Isomap
kernel = "cosine" #--> linear, rbf, sigmoid, polynomial, poly, cosine
embed_test_data = True
embed_again = True
color_map = plt.cm.jet #--> hsv, brg (good for S curve), rgb, jet, gist_ncar (good for one blob), tab10, Set1, rainbow, Spectral #--> https://matplotlib.org/3.2.1/tutorials/colors/colormaps.html
#---- dataset:
X_train, y_train, X_test, y_test, class_names = read_dataset(dataset=dataset)
#---- embedding:
if embed_again:
X_test_embedded = None
if method == "MDS":
my_classical_MDS = My_classical_MDS()
X_train_embedded = my_classical_MDS.fit_transform(X=X_train)
if embed_test_data:
X_test_embedded = my_classical_MDS.transform_outOfSample(X_test=X_test)
elif method == "kernel_MDS":
my_classical_MDS = My_classical_MDS(kernel=kernel)
X_train_embedded = my_classical_MDS.fit_transform(X=X_train)
elif method == "PCA":
pca = PCA(n_components=2)
X_train_embedded = pca.fit_transform(X=X_train.T)
X_train_embedded = X_train_embedded.T
elif method == "my_Sammon_mapping":
my_Sammon_mapping = My_Sammon_mapping(X=X_train, n_components=2, n_neighbors=None,
max_iterations=100, learning_rate=0.1, init_type="PCA")
X_train_embedded = my_Sammon_mapping.fit_transform(X=X_train)
elif method == "Sammon_mapping":
[X_train_embedded, E] = sammon(x=X_train.T, n=2, maxiter=1000)
X_train_embedded = X_train_embedded.T
elif method == "Isomap":
my_Isomap = My_Isomap()
X_train_embedded = my_Isomap.fit_transform(X=X_train)
if embed_test_data:
X_test_embedded = my_Isomap.transform_outOfSample(X_test=X_test)
elif method == "kernel_Isomap":
my_kernel_Isomap = My_kernel_Isomap()
X_train_embedded = my_kernel_Isomap.fit_transform(X=X_train)
#---- save the embeddings:
save_variable(variable=X_train_embedded, name_of_variable="X_train_embedded", path_to_save='./saved_files/'+dataset+"/"+method+"/")
save_variable(variable=y_train, name_of_variable="y_train", path_to_save='./saved_files/'+dataset+"/"+method+"/")
if X_test_embedded is not None:
save_variable(variable=X_test_embedded, name_of_variable="X_test_embedded", path_to_save='./saved_files/'+dataset+"/"+method+"/")
save_variable(variable=y_test, name_of_variable="y_test", path_to_save='./saved_files/'+dataset+"/"+method+"/")
else:
X_train_embedded = load_variable(name_of_variable="X_train_embedded", path='./saved_files/'+dataset+"/"+method+"/")
y_train = load_variable(name_of_variable="y_train", path='./saved_files/'+dataset+"/"+method+"/")
if os.path.isfile('./saved_files/'+dataset+"/"+method+"/X_test_embedded.pckl"): #--> if the test embedding file exists
X_test_embedded = load_variable(name_of_variable="X_test_embedded", path='./saved_files/'+dataset+"/"+method+"/")
y_test = load_variable(name_of_variable="y_test", path='./saved_files/'+dataset+"/"+method+"/")
else:
X_test_embedded = None
#---- plot training embedding:
plt.scatter(X_train_embedded[0, :], X_train_embedded[1, :], c=y_train, cmap=color_map, edgecolors='k')
classes = class_names
n_classes = len(classes)
cbar = plt.colorbar(boundaries=np.arange(n_classes+1)-0.5)
cbar.set_ticks(np.arange(n_classes))
cbar.set_ticklabels(classes)
plt.show()
#---- plot test embedding:
if X_test_embedded is not None:
plt.scatter(X_train_embedded[0, :], X_train_embedded[1, :], c=y_train, cmap=color_map, alpha=0.07)
plt.scatter(X_test_embedded[0, :], X_test_embedded[1, :], c=y_test, cmap=color_map, edgecolors='k')
cbar = plt.colorbar(boundaries=np.arange(n_classes+1)-0.5)
cbar.set_ticks(np.arange(n_classes))
cbar.set_ticklabels(classes)
plt.show()
def read_dataset(dataset):
if dataset == "MNIST":
subset_of_MNIST = True
pick_subset_of_MNIST_again = True
MNIST_subset_cardinality_training = 200
# MNIST_subset_cardinality_testing = 10
MNIST_subset_cardinality_testing = 50
path_dataset = "./datasets/MNIST/"
file = open(path_dataset+'X_train.pckl','rb')
X_train = pickle.load(file); file.close()
file = open(path_dataset+'y_train.pckl','rb')
y_train = pickle.load(file); file.close()
file = open(path_dataset+'X_test.pckl','rb')
X_test = pickle.load(file); file.close()
file = open(path_dataset+'y_test.pckl','rb')
y_test = pickle.load(file); file.close()
if subset_of_MNIST:
if pick_subset_of_MNIST_again:
dimension_of_data = 28 * 28
X_train_picked = np.empty((0, dimension_of_data))
y_train_picked = np.empty((0, 1))
for label_index in range(10):
X_class = X_train[y_train == label_index, :]
X_class_picked = X_class[0:MNIST_subset_cardinality_training, :]
X_train_picked = np.vstack((X_train_picked, X_class_picked))
y_class = y_train[y_train == label_index]
y_class_picked = y_class[0:MNIST_subset_cardinality_training].reshape((-1, 1))
y_train_picked = np.vstack((y_train_picked, y_class_picked))
y_train_picked = y_train_picked.ravel()
X_test_picked = np.empty((0, dimension_of_data))
y_test_picked = np.empty((0, 1))
for label_index in range(10):
X_class = X_test[y_test == label_index, :]
X_class_picked = X_class[0:MNIST_subset_cardinality_testing, :]
X_test_picked = np.vstack((X_test_picked, X_class_picked))
y_class = y_test[y_test == label_index]
y_class_picked = y_class[0:MNIST_subset_cardinality_testing].reshape((-1, 1))
y_test_picked = np.vstack((y_test_picked, y_class_picked))
y_test_picked = y_test_picked.ravel()
# X_train_picked = X_train[0:MNIST_subset_cardinality_training, :]
# X_test_picked = X_test[0:MNIST_subset_cardinality_testing, :]
# y_train_picked = y_train[0:MNIST_subset_cardinality_training]
# y_test_picked = y_test[0:MNIST_subset_cardinality_testing]
save_variable(X_train_picked, 'X_train_picked', path_to_save=path_dataset)
save_variable(X_test_picked, 'X_test_picked', path_to_save=path_dataset)
save_variable(y_train_picked, 'y_train_picked', path_to_save=path_dataset)
save_variable(y_test_picked, 'y_test_picked', path_to_save=path_dataset)
else:
file = open(path_dataset+'X_train_picked.pckl','rb')
X_train_picked = pickle.load(file); file.close()
file = open(path_dataset+'X_test_picked.pckl','rb')
X_test_picked = pickle.load(file); file.close()
file = open(path_dataset+'y_train_picked.pckl','rb')
y_train_picked = pickle.load(file); file.close()
file = open(path_dataset+'y_test_picked.pckl','rb')
y_test_picked = pickle.load(file); file.close()
X_train = X_train_picked
X_test = X_test_picked
y_train = y_train_picked
y_test = y_test_picked
X_train = X_train.T / 255
X_test = X_test.T / 255
class_names = [str(i) for i in range(10)]
elif dataset == "ORL_glasses":
path_dataset = "./datasets/ORL_glasses/"
n_samples = 400
scale = 0.5
image_height = int(112 * scale)
image_width = int(92 * scale)
data = np.zeros((image_height * image_width, n_samples))
labels = np.zeros((1, n_samples))
image_index = -1
for class_index in range(2):
for filename in os.listdir(path_dataset + "class" + str(class_index + 1) + "/"):
image_index = image_index + 1
if image_index >= n_samples:
break
img = load_image(address_image=path_dataset + "class" + str(class_index + 1) + "/" + filename,
image_height=image_height, image_width=image_width, do_resize=False, scale=scale)
data[:, image_index] = img.ravel()
labels[:, image_index] = class_index
# ---- cast dataset from string to float:
data = data.astype(np.float)
# ---- normalize (standardation):
X_notNormalized = data
# data = data / 255
scaler = StandardScaler(with_mean=True, with_std=True).fit(data.T)
data = (scaler.transform(data.T)).T
X_train = data
y_train = labels.ravel()
X_test = None
y_test = None
class_names = ["Without glasses", "With glasses"]
return X_train, y_train, X_test, y_test, class_names
def save_variable(variable, name_of_variable, path_to_save='./'):
# https://stackoverflow.com/questions/6568007/how-do-i-save-and-restore-multiple-variables-in-python
if not os.path.exists(path_to_save): # https://stackoverflow.com/questions/273192/how-can-i-create-a-directory-if-it-does-not-exist
os.makedirs(path_to_save)
file_address = path_to_save + name_of_variable + '.pckl'
f = open(file_address, 'wb')
pickle.dump(variable, f)
f.close()
def load_variable(name_of_variable, path='./'):
# https://stackoverflow.com/questions/6568007/how-do-i-save-and-restore-multiple-variables-in-python
file_address = path + name_of_variable + '.pckl'
f = open(file_address, 'rb')
variable = pickle.load(f)
f.close()
return variable
def load_image(address_image, image_height, image_width, do_resize=False, scale=1):
# http://code.activestate.com/recipes/577591-conversion-of-pil-image-and-numpy-array/
img = Image.open(address_image).convert('L')
if do_resize:
size = int(image_height * scale), int(image_width * scale)
# img.thumbnail(size, Image.ANTIALIAS)
img_arr = np.array(img)
img_arr = resize(img_arr, (int(img_arr.shape[0]*scale), int(img_arr.shape[1]*scale)), order=5, preserve_range=True, mode="constant")
return img_arr
def save_variable(variable, name_of_variable, path_to_save='./'):
# https://stackoverflow.com/questions/6568007/how-do-i-save-and-restore-multiple-variables-in-python
if not os.path.exists(path_to_save): # https://stackoverflow.com/questions/273192/how-can-i-create-a-directory-if-it-does-not-exist
os.makedirs(path_to_save)
file_address = path_to_save + name_of_variable + '.pckl'
f = open(file_address, 'wb')
pickle.dump(variable, f)
f.close()
def load_variable(name_of_variable, path='./'):
# https://stackoverflow.com/questions/6568007/how-do-i-save-and-restore-multiple-variables-in-python
file_address = path + name_of_variable + '.pckl'
f = open(file_address, 'rb')
variable = pickle.load(f)
f.close()
return variable
if __name__ == "__main__":
main()