-
-
Notifications
You must be signed in to change notification settings - Fork 98
/
BinarySearch.sol
54 lines (48 loc) · 1.63 KB
/
BinarySearch.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title find the index position of a value in an array of sorted numbers
* @author [Chiadikaob](https://github.com/Chiadikaobixo)
* @dev https://en.wikipedia.org/wiki/Binary_search_algorithm
*/
/** @dev Binary search is a more faster form of searching with
* a timecomplexity of O(LogN), and it works on only sorted
* arrays. Rather than eliminating one element at a time, binary
* search eliminate half of the remaining elements at a time.
*/
contract BinarySearch {
uint256 value;
uint256[] _nums;
// set the value to lookup in the array
function setValue(uint256 x) public {
value = x;
}
// set the array of sorted numbers
function setArray(uint256[] memory num) public {
_nums = num;
}
// returns the index position of the value in the array
function printResult() public view returns (uint256 result) {
uint256 minimum = 0;
uint256 maximum = _nums.length - 1;
while (minimum <= maximum) {
uint256 middle = (minimum + maximum) / 2;
uint256 currentElement = _nums[middle];
if (currentElement < value) {
minimum = middle + 1;
}
else if (currentElement > value) {
if (middle == 0) {
maximum = 0;
} else {
maximum = middle - 1;
}
} else {
result = int256(middle);
// return the index position of the value in the array
return result;
}
}
return -1;
}
}