-
-
Notifications
You must be signed in to change notification settings - Fork 98
/
fibonacci.sol
66 lines (57 loc) · 1.99 KB
/
fibonacci.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title This is a Solidity implementation to Fibonacci sequence problem.
* @author [Wenceslas Sanchez](https://github.com/wenceslas-sanchez)
* @dev Binet implementation is missing.
*/
contract Fibonacci {
/**
* @notice Computes the n-th (0-indexed) Fibonacci number using recursion.
* @dev This method use a lot of gas to run. Recursive methods are not good ideas.
* For instance with RemixIDE, its hard to go further 10th term.
*/
function fibRecursiveTerm(uint256 _n) public pure returns (uint256) {
uint256 result;
if (_n < 2) {
result = _n;
} else {
result = fibRecursiveTerm(_n - 1) + fibRecursiveTerm(_n - 2);
}
return result;
}
/**
* @notice Computes the first n (0-indexed) Fibonacci numbers using recursion
* @dev It is based on fibRecursiveTerm => consume a lot of gas.
*/
function fibRecursive(uint256 _n) public pure returns (uint256[] memory) {
uint256[] memory result = new uint256[](_n + 1);
for (uint256 i = 0; i < _n + 1; i++) {
result[i] = fibRecursiveTerm(i);
}
return result;
}
/**
* @notice Computes the first n (0-indexed) Fibonacci numbers using memoization.
* @dev Max computable term around 400.
*/
function fibMemoization(uint256 _n) public pure returns (uint256[] memory) {
uint256 cache_size;
if (_n < 2) {
cache_size = 2; // because we need to cache at least the first 2 values.
} else {
cache_size = _n + 1;
}
uint256[] memory cache = new uint256[](cache_size);
uint256[] memory result = new uint256[](_n + 1);
cache[0] = 0;
cache[1] = 1;
for (uint256 i = 0; i < _n + 1; i++) {
if (i > 1) {
cache[i] = cache[i - 1] + cache[i - 2];
}
result[i] = cache[i];
}
return result;
}
}