-
Notifications
You must be signed in to change notification settings - Fork 514
/
Copy pathfinetune.py
269 lines (226 loc) · 11.5 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/python
"""
Tencent is pleased to support the open source community by making Tencent ML-Images available.
Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved.
Licensed under the BSD 3-Clause License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
https://opensource.org/licenses/BSD-3-Clause
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
"""
from __future__ import print_function
import sys
import os
import time
from datetime import datetime
import tensorflow as tf
from models import resnet as resnet
from data_processing import dataset as file_db
from data_processing import image_preprocessing as image_preprocess
from flags import FLAGS
try:
xrange # Python 2
except NameError:
xrange = range # Python 3
#os.environ["CUDA_VISIBLE_DEVICES"]="0,1,2,3"
def assign_weights_from_cp(cpk_path, sess, scope):
'''
restore from ckpt
'''
reader = tf.train.NewCheckpointReader(cpk_path)
temp = reader.debug_string().decode('utf8')
lines = temp.split("\n")
i = 0
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
with tf.variable_scope(scope, reuse=True):
try:
if key.find(r'global_step')!=-1 or key.find(r'Momentum')!=-1 or key.find(r'logits')!=-1:
print("do not need restore from ckpt key:%s" % key)
continue
var = tf.get_variable(key)
sess.run(var.assign(reader.get_tensor(key)))
print("restore from ckpt key:%s" % key)
except ValueError:
print("can not restore from ckpt key:%s" % key)
def record_parser_fn(value, is_training):
"""Parse an image record from `value`."""
keys_to_features = {
'width': tf.FixedLenFeature([], dtype=tf.int64, default_value=0),
'height': tf.FixedLenFeature([], dtype=tf.int64, default_value=0),
'image': tf.FixedLenFeature([], dtype=tf.string, default_value=''),
'label': tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
'name': tf.FixedLenFeature([], dtype=tf.string, default_value='')
}
parsed = tf.parse_single_example(value, keys_to_features)
image = tf.image.decode_image(tf.reshape(parsed['image'], shape=[]),
FLAGS.image_channels)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
bbox = tf.concat(axis=0, values=[ [[]], [[]], [[]], [[]] ])
bbox = tf.transpose(tf.expand_dims(bbox, 0), [0, 2, 1])
image = image_preprocess.preprocess_image(
image=image,
output_height=FLAGS.image_size,
output_width=FLAGS.image_size,
object_cover=0.0,
area_cover=0.05,
is_training=is_training,
bbox=bbox)
label = tf.cast(tf.reshape(parsed['label'], shape=[]),dtype=tf.int32)
label = tf.one_hot(label, FLAGS.class_num)
return image, label
def tower_model(images, labels):
model = resnet.ResNet(images, is_training=(FLAGS.mode == tf.estimator.ModeKeys.TRAIN))
model.build_model()
# waring: Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.losses.softmax_cross_entropy(
logits=model.logit, onehot_labels=labels)
tf.identity(cross_entropy, name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
# Add weight decay to the loss. We Add the batch norm variables into L2 normal because
# in large scale data training this will improve the generalization power of model.
loss = cross_entropy + FLAGS.weight_decay * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if
'bn' not in v.name]) + 0.1 * FLAGS.weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bn' in v.name])
return model, loss
def average_gradients(tower_grads):
""" Calculate the average gradient of shared variables across all towers. """
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for grad, var in grad_and_vars:
grads.append(tf.expand_dims(grad, 0))
# Average over the 'tower' dimension.
gradient = tf.reduce_mean(tf.concat(axis=0, values=grads), 0)
v = grad_and_vars[0][1]
grad_and_var = (gradient, v)
average_grads.append(grad_and_var)
return average_grads
def train(train_dataset, is_training=True):
with tf.Graph().as_default(), tf.device('/cpu:0'):
# set global_step and learning_rate
global_step = tf.train.get_or_create_global_step()
lr = tf.train.exponential_decay(
FLAGS.lr,
global_step,
FLAGS.lr_decay_step,
FLAGS.lr_decay_factor,
staircase=True)
# optimizer, default is momentum
if FLAGS.optimizer == "sgd":
optimizer = tf.train.GradientDescentOptimizer(lr)
elif FLAGS.optimizer == "mom":
optimizer = tf.train.MomentumOptimizer(learning_rate=lr, momentum=FLAGS.opt_momentum)
else:
raise ValueError("Do not support optimizer '%s'" % FLAGS.optimizer)
# Get images and labels for training and split the batch across GPUs.
"""Input function which provides batches for train or eval."""
worker_num = 1
num_preprocess_threads = FLAGS.num_preprocess_threads * FLAGS.num_gpus
batch_size = FLAGS.batch_size * FLAGS.num_gpus
print('batch_size={}'.format(batch_size))
dataset = tf.data.Dataset.from_tensor_slices(train_dataset.data_files())
dataset = dataset.shuffle(buffer_size=FLAGS.file_shuffle_buffer, seed=worker_num)
dataset = dataset.flat_map(tf.data.TFRecordDataset)
dataset = dataset.map(lambda value: record_parser_fn(value, is_training),
num_parallel_calls=num_preprocess_threads)
dataset = dataset.prefetch(batch_size)
if is_training:
# When choosing shuffle buffer sizes, larger sizes result in better
# randomness, while smaller sizes have better performance.
# dataset = dataset.shuffle(buffer_size=_SHUFFLE_BUFFER, seed=worker_id)
dataset = dataset.shuffle(buffer_size=FLAGS.shuffle_buffer)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.repeat()
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
images, labels = iterator.get_next()
images_splits = tf.split(images, FLAGS.num_gpus, 0)
labels_splits = tf.split(labels, FLAGS.num_gpus, 0)
summaries = tf.get_collection(tf.GraphKeys.SUMMARIES)
# Calculate the gradients for each model tower
Loss = None
tower_grads = []
#building graphs
with tf.variable_scope(tf.get_variable_scope()):
print("Building graph ...", file=sys.stderr)
for i in xrange(FLAGS.num_gpus):
with tf.device("/gpu:%d" % i):
with tf.name_scope("%s_%d" % ("tower", i)) as scope:
# Build graph
model, Loss = tower_model(images_splits[i], labels_splits[i])
# Reuse variables for the next tower
tf.get_variable_scope().reuse_variables()
# Get finetune variables
finetune_vars = []
if FLAGS.FixBlock2:
finetune_vars = [v for v in tf.trainable_variables()
if v.name.find(r"stages_2") != -1 or
v.name.find(r"stages_3") != -1 or
v.name.find(r"global_pool") != -1 or
v.name.find(r"logits") != -1]
else:
finetune_vars = tf.trainable_variables()
# Only the summaries from the final tower are retained
summary = tf.get_collection(tf.GraphKeys.SUMMARIES, scope=scope)
grads = optimizer.compute_gradients(Loss, var_list=finetune_vars)
tower_grads.append(grads)
print("Build Graph (%s/%s)" % (i+1, FLAGS.num_gpus), file=sys.stderr)
summaries.append(summary)
summaries.append(tf.summary.scalar('learning_rate', lr))
# Build train op,
grads = average_gradients(tower_grads)
apply_gradient_op = optimizer.apply_gradients(grads, global_step=global_step)
##############
batchnorm_updates_op = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
train_op = tf.group(apply_gradient_op, batchnorm_updates_op)
# Build Session : may conf carefully
sess = tf.Session(config=tf.ConfigProto( allow_soft_placement=True, log_device_placement=False))
saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.max_to_keep)
summary_op = tf.summary.merge(summaries)
summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph)
# Initialize Model
if FLAGS.restore:
print("Restoring checkpoint from %s" % FLAGS.pretrain_ckpt, file=sys.stderr)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
#restore from existing ckpts
assign_weights_from_cp(FLAGS.pretrain_ckpt, sess, tf.get_variable_scope())
else:
print("Run global_variables_initializer ..", file=sys.stderr)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sys.stdout.write("---------------Trainging Begin---------------\n")
batch_duration = 0.0
# Initial queue runner
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# Start train iter
step = sess.run(global_step)
i=0
while i <= FLAGS.max_iter:
# profile log
if i > 0 and i % FLAGS.prof_interval == 0:
print("%s: step %d, iteration %d, %.2f sec/batch" %
(datetime.now(), step, i, batch_duration))
# log
if i > 0 and i % FLAGS.log_interval == 0:
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, i)
# checkpoint
if i > 0 and i % FLAGS.snapshot == 0:
if not os.path.exists(FLAGS.model_dir):
os.mkdir(FLAGS.model_dir)
ckpt_path = os.path.join(FLAGS.model_dir, "resnet.ckpt")
saver.save(sess, ckpt_path, global_step=global_step)
# train
batch_start = time.time()
_, step, loss = sess.run([train_op, global_step, Loss])
batch_duration = time.time() - batch_start
i = i + 1
print("%s: step %d, iteration %d, train loss %.2f " % (datetime.now(), step, i, loss))
coord.request_stop()
def main(_):
train_dataset = file_db.Dataset(os.path.join(FLAGS.data_dir, 'train'))
train(train_dataset, is_training=(FLAGS.mode == tf.estimator.ModeKeys.TRAIN))
if __name__ == "__main__":
tf.app.run()