-
Notifications
You must be signed in to change notification settings - Fork 72
Open
Description
Hi,
I tested the "demo.jpg" with 'performance' mode and 'balanced' mode, and found that the result from 'performance' mode is worse? Is it correct?
I attach some inference codes I used bellow and inference results from different modes.
Could you please tell me whether there is any bugs in the codes?
Inference codes:
import cv2
from rtmlib import Wholebody, draw_skeleton
device = 'cuda' # cpu, cuda, mps
backend = 'onnxruntime' # opencv, onnxruntime, openvino
img = cv2.imread('./demo.jpg')
openpose_skeleton = False # True for openpose-style, False for mmpose-style
wholebody = Wholebody(to_openpose=openpose_skeleton,
mode='balanced', # 'performance', 'lightweight', 'balanced'. Default: 'balanced'
backend=backend, device=device)
keypoints, scores = wholebody(img)
# visualize
# img_show = np.zeros(img_show.shape, dtype=np.uint8)
img_show = draw_skeleton(img, keypoints, scores, kpt_thr=0.5)
cv2.imwrite("./demo_result.jpg", img_show)
setting in wholebody.py:
class Wholebody:
MODE = {
'performance': {
'det':
'/mnt/new_nas/zhenyuxie/MCA-project/datas/rtmlib/ckpts/yolox_m_8xb8-300e_humanart-c2c7a14a/end2end.onnx', # noqa
'det_input_size': (640, 640),
'pose':
'/mnt/new_nas/zhenyuxie/MCA-project/datas/rtmlib/ckpts/rtmw-dw-x-l_simcc-cocktail14_270e-384x288_20231122/end2end.onnx', # noqa
'pose_input_size': (288, 384),
},
'lightweight': {
'det':
'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/onnx_sdk/yolox_tiny_8xb8-300e_humanart-6f3252f9.zip', # noqa
'det_input_size': (416, 416),
'pose':
'https://download.openmmlab.com/mmpose/v1/projects/rtmw/onnx_sdk/rtmw-dw-l-m_simcc-cocktail14_270e-256x192_20231122.zip', # noqa
'pose_input_size': (192, 256),
},
'balanced': {
'det':
'/mnt/new_nas/zhenyuxie/MCA-project/datas/rtmlib/ckpts/yolox_m_8xb8-300e_humanart-c2c7a14a/end2end.onnx', # noqa
'det_input_size': (640, 640),
'pose':
'/mnt/new_nas/zhenyuxie/MCA-project/datas/rtmlib/ckpts/rtmw-dw-x-l_simcc-cocktail14_270e-256x192_20231122/end2end.onnx', # noqa
'pose_input_size': (192, 256),
}
}
Here is the result from 'performance' mode
Metadata
Metadata
Assignees
Labels
No labels

