forked from jquesnelle/yarn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
248 lines (209 loc) · 8.33 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import copy
import torch
import torch.distributed as torch_distributed
import os
from datasets import load_dataset, load_from_disk, DatasetDict
from datetime import timedelta
from torch.utils.data import DataLoader
from accelerate import Accelerator
from accelerate.utils import InitProcessGroupKwargs, set_seed, DummyOptim, DummyScheduler
from tqdm import tqdm
from transformers import set_seed, default_data_collator, get_linear_schedule_with_warmup, get_constant_schedule_with_warmup
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType, FullStateDictConfig
import time
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from deepspeed.accelerator import get_accelerator
from accelerate.utils import DeepSpeedPlugin
import wandb
from megatron_lm.megatron.global_vars import set_global_variables
from src.utils.train_utils import (
clear_gpu_cache,
setup_environ_flags,
train,
)
from src.utils.checkpoint import (
load_model_state_dict,
load_optimizer_state_dict,
load_scheduler_state_dict,
load_rng_state_dict,
get_latest_iteration,
)
from src.optimizer import WarmupCosineAnnealingLR
from src.utils.distributed import (
print_rank_0,
is_rank_0,
set_mpi_env,
get_rank,
get_local_rank
)
from src.arguments import parse_args
def find_all_linear_names(model):
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names:
lora_module_names.remove("lm_head")
return list(lora_module_names)
def main():
args = parse_args()
set_global_variables(args=args)
# Set the seeds for reproducibility
set_seed(seed=args.seed)
# Distributed args.
if args.use_mpi:
set_mpi_env()
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
args.rank = rank
args.world_size = world_size
args.gradient_accumulation_steps = args.global_batch_size // (args.micro_batch_size * world_size)
get_accelerator().set_device(get_local_rank()) # type: ignore
# torch_distributed.init_process_group(backend="nccl", world_size=world_size, rank=rank)
deepPlugin = DeepSpeedPlugin(
hf_ds_config=args.zero_config,
zero3_init_flag=True if args.zero_stage == 3 else False,
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_clipping=args.grad_clip_norm,
zero_stage=args.zero_stage,
)
accelerator = Accelerator(
mixed_precision='bf16' if args.bf16 else 'fp16',
deepspeed_plugin=deepPlugin,
gradient_accumulation_steps=args.gradient_accumulation_steps,
step_scheduler_with_optimizer=False,
even_batches=False,
)
# wandb setting
if args.wandb_name and is_rank_0():
import datetime
now = datetime.datetime.now()
now = now.strftime("%Y-%m-%d-%H-%M-%S")
wandb_setting: dict = {
"entity": args.wandb_entity,
"project": args.wandb_project,
"name": args.wandb_name,
"config": vars(args),
}
wandb.init(**wandb_setting)
if torch_distributed.is_initialized():
torch.cuda.set_device(get_local_rank()) # type: ignore
clear_gpu_cache(get_local_rank()) # type: ignore
setup_environ_flags(get_rank()) # type: ignore
iteration: int = get_latest_iteration(args.load)
args.iteration = iteration
torch_distributed.barrier()
# random seed
if args.load:
load_rng_state_dict(args.load)
torch_distributed.barrier()
if args.architecture == "llama":
from scaled_rope.modeling_llama_yarn import LlamaForCausalLM
from scaled_rope.configuration_llama import LlamaConfig
config_cls = LlamaConfig
model_cls = LlamaForCausalLM
original_max_position_embeddings = args.original_max_position_embeddings if args.original_max_position_embeddings else 4096
elif args.architecture == "mistral":
from scaled_rope.modeling_mistral_yarn import MistralForCausalLM
from scaled_rope.configuration_mistral import MistralConfig
config_cls = MistralConfig
model_cls = MistralForCausalLM
original_max_position_embeddings = args.original_max_position_embeddings if args.original_max_position_embeddings else 8192
config = config_cls.from_pretrained(args.base_model)
config.rope_scaling = {
"type": args.scaling_type,
"factor": args.scaling_factor,
"original_max_position_embeddings": original_max_position_embeddings
}
config.rope_theta = args.rope_theta
config.max_position_embeddings = int(args.scaling_factor * original_max_position_embeddings) \
if not args.max_position_embeddings else args.max_position_embeddings
sliding_window_attention_schedule = [int(x) for x in args.sliding_window_attention_schedule.split(",")] \
if args.sliding_window_attention_schedule else None
if sliding_window_attention_schedule is not None and len(sliding_window_attention_schedule) == 1:
config.sliding_window = sliding_window_attention_schedule[0]
if is_rank_0():
print(
f"Sliding attention window set to {config.sliding_window}")
if args.architecture == "mistral":
config._flash_attn_2_enabled = True
model = model_cls.from_pretrained(
args.base_model,
torch_dtype=torch.bfloat16,
config=config,
attn_implementation="flash_attention_2",
)
# dataset
from src.datasets.pretrain_dataset import build_train_valid_test_datasets
from megatron_lm.megatron.data.data_samplers import build_pretraining_data_loader
train_dataset, validation_dataset, test_dataset = build_train_valid_test_datasets()
args.consumed_train_samples = args.global_batch_size * args.iteration
args.consumed_valid_samples = args.global_batch_size * (
args.iteration // args.eval_interval) * args.eval_iters
train_dataloader = build_pretraining_data_loader(
dataset=train_dataset,
consumed_samples=args.consumed_train_samples,
)
validation_dataloader = build_pretraining_data_loader(
dataset=validation_dataset,
consumed_samples=args.consumed_valid_samples,
)
torch_distributed.barrier()
model.config.use_cache = False
model.gradient_checkpointing_enable( # type: ignore
gradient_checkpointing_kwargs={"use_reentrant": False}
)
model.enable_input_require_grads() # type: ignore
print_rank_0("Gradient checkpointing enable")
# Convert the model to bfloat16 if fsdp and pure_bf16 is enabled
if args.bf16:
model.to(torch.bfloat16) # type: ignore
elif args.fp16:
model.to(torch.float16) # type: ignore
model.train() # type: ignore
optimizer = optim.AdamW(
model.parameters(), # type: ignore
lr=args.lr,
betas=(args.adam_beta1, args.adam_beta2),
eps=args.adam_eps,
weight_decay=args.weight_decay,
)
if args.lr_decay_style == "cosine":
scheduler = WarmupCosineAnnealingLR(
optimizer=optimizer,
warmup_iterations=args.lr_warmup_iters,
decay_iterations=args.lr_decay_iters,
max_iterations=args.train_iters,
eta_min=args.min_lr,
)
else:
scheduler = StepLR(optimizer, step_size=1, gamma=0.85)
if args.load:
load_scheduler_state_dict(scheduler, args.load) # type: ignore
# ref: https://github.com/microsoft/DeepSpeed/pull/5008#issuecomment-1910607845
model, optimizer, _, _, scheduler = accelerator.prepare(
model,
optimizer,
train_dataloader,
validation_dataloader,
scheduler,
)
if args.load:
load_model_state_dict(model, args.load) # type: ignore
# Start the training process
train(
model=model,
train_dataloader=train_dataloader,
eval_dataloader=validation_dataloader,
optimizer=optimizer, # type: ignore
lr_scheduler=scheduler,
gradient_accumulation_steps=args.gradient_accumulation_steps,
accelerator=accelerator,
local_rank=get_local_rank(),
rank=get_rank(),
)
if __name__ == "__main__":
main()