-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsort_and_group.py
94 lines (85 loc) · 3.78 KB
/
sort_and_group.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from transformers import AutoTokenizer, AutoModel
import copy
import torch
import json, os
import multiprocessing
from tqdm import tqdm
import numpy as np
import random
import argparse
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--group_size', default=8, type=int)
parser.add_argument('--train_file', type=str)
return parser.parse_args(args)
def main(args):
filepath = args.train_file
PAD_ID = 0
group_size = args.group_size
# sort
input_ids = torch.from_numpy(np.load(os.path.join(filepath, 'inputs.npy')))
labels = torch.from_numpy(np.load(os.path.join(filepath, 'labels.npy')))
eos_indices = input_ids.argmin(dim=1) - 1
eos_indices, indices = torch.sort(eos_indices)
input_ids, labels = input_ids[indices], labels[indices]
group_num = input_ids.size(0) // group_size
input_ids = input_ids[:group_num*group_size].view(group_num, group_size, -1)
labels = labels[:group_num*group_size].view(group_num, group_size, -1)
idx = torch.randperm(group_num)
input_ids = input_ids[idx].view(group_num*group_size, -1)
labels = labels[idx].view(group_num*group_size, -1)
np.save(os.path.join(filepath, 'inputs_sort.npy'), input_ids.numpy().astype(np.int64))
np.save(os.path.join(filepath, 'labels_sort.npy'), labels.numpy().astype(np.int64))
# pack
input_ids = torch.from_numpy(np.load(os.path.join(filepath, 'inputs.npy')))
labels = torch.from_numpy(np.load(os.path.join(filepath, 'labels.npy')))
num, max_length = input_ids.shape
max_length = 65536
new_inputs = []
new_labels = []
new_weights = []
attention_masks = []
tmp_input = torch.full((max_length,), PAD_ID, dtype=torch.int64)
tmp_label = torch.full((max_length,), -100, dtype=torch.int64)
tmp_weight = torch.full((max_length,), 0., dtype=torch.float32)
attention_mask = [0]
curr_idx = 0
idx = 0
total_len = []
while idx < num:
input_id, label = input_ids[idx], labels[idx]
eos_indice = input_id.argmin().item() - 1
if eos_indice + 1 >= max_length or eos_indice < 0: # exceed max length
idx += 1
continue
elif curr_idx + eos_indice + 1 >= max_length: # full, start new pack
total_len.append(len(attention_mask))
new_inputs.append(tmp_input)
new_labels.append(tmp_label)
new_weights.append(tmp_weight)
attention_masks.append(attention_mask+[max_length])
curr_idx = 0
tmp_input = torch.full((max_length,), PAD_ID, dtype=torch.int64)
tmp_label = torch.full((max_length,), -100, dtype=torch.int64)
tmp_weight = torch.full((max_length,), 0., dtype=torch.float32)
attention_mask = [0]
else: # pack in
tmp_input[curr_idx: curr_idx+eos_indice+1] = input_id[:eos_indice+1]
tmp_label[curr_idx: curr_idx+eos_indice+1] = label[:eos_indice+1]
weight = torch.where(label[:eos_indice+1] == -100, 0, 1)
if weight.sum() > 0.5:
weight = weight / weight.sum()
tmp_weight[curr_idx: curr_idx+eos_indice+1] = weight
curr_idx += (eos_indice+1)
attention_mask.append(curr_idx)
idx += 1
input_ids = torch.stack(new_inputs, dim=0)
labels = torch.stack(new_labels, dim=0)
weights = torch.stack(new_weights, dim=0)
np.save(os.path.join(filepath, 'inputs_pack.npy'), input_ids.numpy().astype(np.int64))
np.save(os.path.join(filepath, 'labels_pack.npy'), labels.numpy().astype(np.int64))
np.save(os.path.join(filepath, 'weights_pack.npy'), weights.numpy())
json.dump(attention_masks, open(os.path.join(filepath, 'attention_masks_pack.json'), 'w'))
print(np.mean(total_len))
if __name__ == '__main__':
main(parse_args())