-
Notifications
You must be signed in to change notification settings - Fork 1
/
infer_spm.py
227 lines (204 loc) · 7.64 KB
/
infer_spm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import gc
from pathlib import Path
import torch
from typing import Literal
from src.configs.generation_config import load_config_from_yaml, GenerationConfig
from src.configs.config import parse_precision
from src.engine import train_util
from src.models import model_util
from src.models.spm import SPMLayer, SPMNetwork
from src.models.merge_spm import load_state_dict
DEVICE_CUDA = torch.device("cuda:0")
UNET_NAME = "unet"
TEXT_ENCODER_NAME = "text_encoder"
MATCHING_METRICS = Literal[
"clipcos",
"clipcos_tokenuni",
"tokenuni",
]
def flush():
torch.cuda.empty_cache()
gc.collect()
def calculate_matching_score(
prompt_tokens,
prompt_embeds,
erased_prompt_tokens,
erased_prompt_embeds,
matching_metric: MATCHING_METRICS,
special_token_ids: set[int],
weight_dtype: torch.dtype = torch.float32,
):
scores = []
if "clipcos" in matching_metric:
clipcos = torch.cosine_similarity(
prompt_embeds.flatten(1, 2),
erased_prompt_embeds.flatten(1, 2),
dim=-1).cpu()
scores.append(clipcos)
if "tokenuni" in matching_metric:
prompt_set = set(prompt_tokens[0].tolist()) - special_token_ids
tokenuni = []
for ep in erased_prompt_tokens:
ep_set = set(ep.tolist()) - special_token_ids
tokenuni.append(len(prompt_set.intersection(ep_set)) / len(ep_set))
scores.append(torch.tensor(tokenuni).to("cpu", dtype=weight_dtype))
return torch.max(torch.stack(scores), dim=0)[0]
def infer_with_spm(
spm_paths: list[str],
config: GenerationConfig,
matching_metric: MATCHING_METRICS,
assigned_multipliers: list[float] = None,
base_model: str = "CompVis/stable-diffusion-v1-4",
v2: bool = False,
precision: str = "fp32",
):
spm_model_paths = [lp / f"{lp.name}_last.safetensors" if lp.is_dir() else lp for lp in spm_paths]
weight_dtype = parse_precision(precision)
# load the pretrained SD
tokenizer, text_encoder, unet, pipe = model_util.load_checkpoint_model(
base_model,
v2=v2,
weight_dtype=weight_dtype
)
special_token_ids = set(tokenizer.convert_tokens_to_ids(tokenizer.special_tokens_map.values()))
text_encoder.to(DEVICE_CUDA, dtype=weight_dtype)
text_encoder.eval()
unet.to(DEVICE_CUDA, dtype=weight_dtype)
unet.enable_xformers_memory_efficient_attention()
unet.requires_grad_(False)
unet.eval()
# load the SPM modules
spms, metadatas = zip(*[
load_state_dict(spm_model_path, weight_dtype) for spm_model_path in spm_model_paths
])
# check if SPMs are compatible
assert all([metadata["rank"] == metadatas[0]["rank"] for metadata in metadatas])
# get the erased concept
erased_prompts = [md["prompts"].split(",") for md in metadatas]
erased_prompts_count = [len(ep) for ep in erased_prompts]
print(f"Erased prompts: {erased_prompts}")
erased_prompts_flatten = [item for sublist in erased_prompts for item in sublist]
erased_prompt_embeds, erased_prompt_tokens = train_util.encode_prompts(
tokenizer, text_encoder, erased_prompts_flatten, return_tokens=True
)
network = SPMNetwork(
unet,
rank=int(float(metadatas[0]["rank"])),
alpha=float(metadatas[0]["alpha"]),
module=SPMLayer,
).to(DEVICE_CUDA, dtype=weight_dtype)
with torch.no_grad():
for prompt in config.prompts:
prompt += config.unconditional_prompt
print(f"Generating for prompt: {prompt}")
prompt_embeds, prompt_tokens = train_util.encode_prompts(
tokenizer, text_encoder, [prompt], return_tokens=True
)
if assigned_multipliers is not None:
multipliers = torch.tensor(assigned_multipliers).to("cpu", dtype=weight_dtype)
if assigned_multipliers == [0,0,0]:
matching_metric = "aazeros"
elif assigned_multipliers == [1,1,1]:
matching_metric = "zzone"
else:
multipliers = calculate_matching_score(
prompt_tokens,
prompt_embeds,
erased_prompt_tokens,
erased_prompt_embeds,
matching_metric=matching_metric,
special_token_ids=special_token_ids,
weight_dtype=weight_dtype
)
multipliers = torch.split(multipliers, erased_prompts_count)
print(f"multipliers: {multipliers}")
weighted_spm = dict.fromkeys(spms[0].keys())
used_multipliers = []
for spm, multiplier in zip(spms, multipliers):
max_multiplier = torch.max(multiplier)
for key, value in spm.items():
if weighted_spm[key] is None:
weighted_spm[key] = value * max_multiplier
else:
weighted_spm[key] += value * max_multiplier
used_multipliers.append(max_multiplier.item())
network.load_state_dict(weighted_spm)
with network:
images = pipe(
negative_prompt=config.negative_prompt,
width=config.width,
height=config.height,
num_inference_steps=config.num_inference_steps,
guidance_scale=config.guidance_scale,
generator=torch.cuda.manual_seed(config.seed),
num_images_per_prompt=config.generate_num,
prompt_embeds=prompt_embeds,
).images
folder = Path(config.save_path.format(prompt.replace(" ", "_"), "0")).parent
if not folder.exists():
folder.mkdir(parents=True, exist_ok=True)
for i, image in enumerate(images):
image.save(
config.save_path.format(
prompt.replace(" ", "_"), i
)
)
def main(args):
spm_path = [Path(lp) for lp in args.spm_path]
generation_config = load_config_from_yaml(args.config)
infer_with_spm(
spm_path,
generation_config,
args.matching_metric,
assigned_multipliers=args.spm_multiplier,
base_model=args.base_model,
v2=args.v2,
precision=args.precision,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
default="configs/generation.yaml",
help="Base configs for image generation.",
)
parser.add_argument(
"--spm_path",
required=True,
nargs="*",
help="SPM(s) to use.",
)
parser.add_argument(
"--spm_multiplier",
nargs="*",
type=float,
default=None,
help="Assign multipliers for SPM model or set to `None` to use Facilitated Transport.",
)
parser.add_argument(
"--matching_metric",
type=str,
default="clipcos_tokenuni",
help="matching metric for prompt vs erased concept",
)
# model configs
parser.add_argument(
"--base_model",
type=str,
default="CompVis/stable-diffusion-v1-4",
help="Base model for generation.",
)
parser.add_argument(
"--v2",
action="store_true",
help="Use the 2.x version of the SD.",
)
parser.add_argument(
"--precision",
type=str,
default="fp32",
help="Precision for the base model.",
)
args = parser.parse_args()
main(args)