Skip to content

Files

Latest commit

author
ramdrop
Mar 13, 2023
4195c8b · Mar 13, 2023

History

History
This branch is 1 commit ahead of ramdrop/cue:master.

cue_feature

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023
Mar 13, 2023

CUE-Feature

Environment (Docker)

  • Ubuntu 18.04
  • PyTorch 1.12 + CUDA 11.3
  • MinkowskiEngine 0.5.4

To set up the environment, modify TORCH_CUDA_ARCH_LIST in docker/Dockfile to match your GPU, and then run the following commands:

$local: docker build -t cue:1.0 docker
$local: docker run --gpus all --rm -itd --name cue -v /local_dir:/container_dir --shm-size 16G --ipc=host cue:1.0
$container: conda init
$(base)container: cd cue_feature/
$(base)container: ./install_env.sh

Dataset

To download the required datasets, run the following scripts:

./scripts/download_3dmatch.sh dbs/
./scripts/download_3dmatch_testbench.sh dbs/

Train CUE/CUE+

  • First, to train FCGF , run the following command:
    python main.py  train=3dmatch_pair
  • Then, to train CUE, populate weights in conf/train/3dmatch_pair_btl with the saved checkpoint path, for example: weights: logs/HCL_0419_161400/best_val_checkpoint.pth, and run the following command:
    python main.py train=3dmatch_pair_btl
  • Alternatively, to train CUE+, populate weights in conf/train/3dmatch_pair_mbtl with the saved checkpoint path and run the following command:
    python main.py train=3dmatch_pair_mbtl

Evaluate CUE/CUE+

  • Eval FCGF:
    python eval/eval_3dmatch.py  --model=[saved_checkpoint.pth] --extract_features=1    --evaluate_FMR=1
  • Eval CUE:
    python eval/eval_3dmatch.py  --model=[saved_checkpoint.pth] --evaluate_ECE=1
  • Eval CUE+:
    python eval/eval_3dmatch.py  --model=[saved_checkpoint.pth] --evaluate_ECE=1

Plot ECE of CUE/CUE+

  • To plot the ECE of CUE/CUE+, run the following commands:
    python eval/ece_rg.py
    # populate the ece_results.pickle path in eval/plot.ece.py and then run
    python eval/plot_ece.py
    

Pretained models

Pretained models available at Dropbox.