-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification.py
53 lines (44 loc) · 1.59 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import pandas as pd
import os
import sklearn
import sklearn.metrics as met
from sklearn.model_selection import KFold
import utils
### ML models
from sklearn.linear_model import LinearRegression, Lasso
from sklearn.cross_decomposition import PLSRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
#
# Classification
# Classifying phenotyppes based on given hyperspectral signatures.
# Input:
# train_X - hyperspectral signatures of training samples
# train_Y - target phenotypes of training samples
# test_X - hyperspectral signatures of testing samples
# test_Y - target phenotypes of testing samples
# Output: classification report (accuracy, precision, recall, and F-1 scores)
# Note: The code is using RandomForest classifier. You may switch to any other classifier available on Scikit-Learn.
#
def classification(train_X, train_Y, test_X, test_Y):
params = {"n_estimators": np.linspace(10, 1000, dtype="int32")}
search = RandomizedSearchCV(
estimator=RandomForestClassifier(),
n_iter=30,
cv=5,
n_jobs=-1,
param_distributions=params,
verbose=1,
error_score="raise",
)
search.fit(train_X, train_Y)
model = search.best_estimator_
print("Best Parameter")
print(search.best_params_)
model.fit(train_X, train_Y)
y_pred = model.predict(test_X)
print(classification_report(test_Y, y_pred))