-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathdetect.py
221 lines (192 loc) · 10.5 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
from utils import output_upsample
from models import *
from utils.datasets import *
from utils.utils import *
def detect(save_img=False):
if opt.quantizer_output == True:
tmp_dir = 'quantizer_output'
subprocess.Popen("rm -rf %s" % tmp_dir, shell=True)
imgsz = opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
out, source, weights, view_img, save_txt = opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize
device = torch_utils.select_device(opt.device)
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Initialize model
model = Darknet(opt.cfg, imgsz, quantized=opt.quantized, quantizer_output=opt.quantizer_output,
layer_idx=opt.layer_idx,
reorder=opt.reorder, TN=opt.TN, TM=opt.TM, a_bit=opt.a_bit, w_bit=opt.w_bit, FPGA=opt.FPGA,
is_gray_scale=opt.gray_scale, maxabsscaler=opt.maxabsscaler, shortcut_way=opt.shortcut_way)
# Load weights
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'], strict=False)
else: # darknet format
load_darknet_weights(model, weights)
#################打印model_list
'''AWEIGHT = torch.load(weights, map_location=device)['model']
for k,v in AWEIGHT.items():
print(k)'''
# Eval mode
model.to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz, is_gray_scale=opt.gray_scale, rect=opt.rect)
# Get names and colors
names = load_classes(opt.names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
# img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
# _ = model(img.float()) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
if opt.maxabsscaler:
# 输出原始图片
if opt.quantizer_output == True:
if not os.path.isdir('./quantizer_output/'):
os.makedirs('./quantizer_output/')
ori_img = copy.deepcopy(img)
ori_img_input = np.array(ori_img.cpu()).reshape(1, -1)
np.savetxt('./quantizer_output/img_input.txt', ori_img_input, delimiter='\n')
ori_img_input = ori_img_input.astype(np.int8)
writer = open('./quantizer_output/img_bin', "wb")
writer.write(ori_img_input)
writer.close()
val_img = copy.deepcopy(img)
val_img = val_img - 128
img /= 256
img = img * 2 - 1
# 输出第一层的要送入卷积的量化数据
if opt.quantizer_output == True:
if not os.path.isdir('./quantizer_output/'):
os.makedirs('./quantizer_output/')
q_img_input = copy.deepcopy(img)
q_img_input = q_img_input * (2 ** (opt.a_bit - 1))
# 软硬件处理方式对比
delt = val_img - q_img_input
delt = np.array(delt.cpu()).reshape(1, -1)
delt_count = [np.sum(abs(delt) > 0)]
np.savetxt(('./quantizer_output/not0_count.txt'), delt_count)
q_img_input = np.array(q_img_input.cpu()).reshape(1, -1)
np.savetxt('./quantizer_output/q_img_input.txt', q_img_input, delimiter='\n')
q_img_input = q_img_input.astype(np.int8)
writer = open('./quantizer_output/q_img_bin', "wb")
writer.write(q_img_input)
writer.close()
else:
img /= 256.0 # 0 - 255 to 0.0 - 1.0
if opt.quantized != -1:
if opt.a_bit == 16:
img = img * (2 ** 14)
sign = torch.sign(img)
img = sign * torch.floor(torch.abs(img) + 0.5)
img = img / (2 ** 14)
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_synchronized()
pred = model(img, augment=opt.augment)[0]
t2 = torch_utils.time_synchronized()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms)
# Process detections
for i, det in enumerate(pred): # detections for image i
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from imgsz to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path')
parser.add_argument('--names', type=str, default='data/coco.names', help='*.names path')
parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='weights path')
parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--rect', action='store_true', help='rectangular detecting')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--quantized', type=int, default=-1, help='quantization way')
parser.add_argument('--shortcut_way', type=int, default=1, help='--shortcut quantization way')
parser.add_argument('--a_bit', type=int, default=8, help='a-bit')
parser.add_argument('--w_bit', type=int, default=8, help='w-bit')
parser.add_argument('--FPGA', action='store_true', help='FPGA')
parser.add_argument('--quantizer_output', action='store_true', help='quantizer output')
parser.add_argument('--layer_idx', type=int, default=-1, help='output')
parser.add_argument('--reorder', action='store_true', help='reorder')
parser.add_argument('--TN', type=int, default=32, help='TN')
parser.add_argument('--TM', type=int, default=32, help='TM')
parser.add_argument('--gray-scale', action='store_true', help='gray scale trainning')
parser.add_argument('--maxabsscaler', '-mas', action='store_true', help='Standarize input to (-1,1)')
opt = parser.parse_args()
opt.cfg = list(glob.iglob('./**/' + opt.cfg, recursive=True))[0] # find file
opt.names = list(glob.iglob('./**/' + opt.names, recursive=True))[0] # find file
print(opt)
with torch.no_grad():
detect()
if opt.quantizer_output == True and opt.layer_idx == -1:
output_upsample.Val_upsample(opt.cfg, opt.TN)