-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpowerSupplies1.tex
268 lines (198 loc) · 8.24 KB
/
powerSupplies1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
\section{Power Supplies}
\begin{center}
\textit{Power Supplies 1}
\vspace{1mm}
\hrule
\end{center}
\subsection{What \textit{is} power?}
Power is the rate of disapation of energy. You can express power in terms of voltage and current using the chain rule.
\begin{align*}
P = \frac{dE}{dt},\, V = \frac{dP}{dQ},\, I = \frac{dQ}{dt}
\end{align*}
\begin{align*}
P = I \cdot V = \frac{dP}{dQ} \cdot \frac{dQ}{dt} = \frac{dE}{dt}
\end{align*}
Losses are often expressed in terms of power. Ohmic loss is the power lost though resistance.
\begin{align*}
P = I^2R
\end{align*}
This means that to decrease Ohmic loss you can increase the voltage while decreasing the current. This is easy to do for AC with a transformer, but harder to achieve for DC.
\subsection{Quantifying Time-dependent Voltage}
\begin{itemize}
\item Instantaneous value
\item Peak value
\item Peak to peak value
\item Average value
\item Effective value or RMS
\end{itemize}
\subsubsection{Effective Voltage and Power}
\begin{gather*}
\textrm{At DC:}\; P = IV = \frac{V^2}{R} \\
\textrm{At AC:}\; P_{AV} = \frac{1}{T} \int^T_0 \frac{v^2(t)}{R} dt
\end{gather*}
$V_{RMS}$ is a voltage that will cause the same loss in a resistance $R$ as a DC voltage $V$.
\begin{gather*}
P_{AV} = \frac{V^2_{RMS}}{R} = \frac{1}{T}\int^T_0 \frac{v^2(t)}{R}dt \\
\downarrow \\
V_{RMS} = \sqrt{\frac{1}{T}\int^T_0v^2(t)dt} \\
\end{gather*}
For a generic AC voltage $V_m\sin(\omega t)$ this solves to the following.
\begin{align*}
V_{RMS} &= \frac{1}{2\pi} \int^{2\pi}_{0} V_m^2 \sin^2(\omega t) d(\omega t) \\
&= \frac{V_m^2}{4\pi} \int^{2\pi}_{0} (1 - \cos(\omega t)) d(\omega t) \\
V_{RMS} &= \frac{V_m}{2}
\end{align*}
\subsection{Transformers}
Transformers convert AC voltages. This conversion is done in the ratio of turns in each coil: the turn ratio $a$.
\begin{equation*}
a = \frac{n_1}{n_2} = \frac{v_1}{v_2}
\end{equation*}
\subsection{Rectification}
Rectification is the process of converting AC $\rightarrow$ DC voltages.
\subsubsection{Half Wave Rectifier}
In a half wave rectifier a diode is used to remove the negative part of the signal over a load
\begin{figure}[H]
\centering
\href{https://en.wikipedia.org/wiki/Rectifier#/media/File:Halfwave.rectifier.en.svg}{\includegraphics[width=\textwidth]{images/half-wave-rectifier.png}}
\caption{Circuit, input and output diagrams for a half-wave rectifier.}
\end{figure}
You can then put a capacitor across the output to smoothen the output waveform.
\subsubsection{Full Wave Rectifier}
Using a center tap on the transformer you can do full wave rectification.
\begin{figure}[H]
\centering
\href{https://en.wikipedia.org/wiki/Rectifier#/media/File:Fullwave.rectifier.en.svg}{\includegraphics[width=\textwidth]{images/full-wave-rectifier.png}}
\caption{Circuit, input and output diagrams for a full-wave rectifier.}
\end{figure}
\subsubsection{Bridge Rectifier}
A bridge rectifier doesn't require a center tap on the transformer, and has half the current though the diodes, but has twice the voltage drop though the resistors.
\begin{figure}[H]
\centering
\href{https://en.wikipedia.org/wiki/Rectifier#/media/File:Gratz.rectifier.en.svg}{\includegraphics[width=\textwidth]{images/bridge-rectifier.png}}
\caption{Circuit, input and output diagrams for a bridge rectifier.}
\end{figure}
\subsection{Quantifying and Calculating Ripple Voltage}
Ripple voltage is the deviation from the ideal DC voltage at the output. The voltage decay from the maximum voltage can be expressed as the following:
\begin{gather*}
v_0(t) = v_p e^{-\frac{t}{RC}}
\end{gather*}
Then using the fact that for small $t$, $e^{-x} \approx 1-x$:
\begin{gather*}
v_{min} = v_p\left(1 - \frac{t}{RC}\right)
\end{gather*}
Then if $RC >> T$:
\begin{gather*}
v_r \approx \frac{v_p T}{RC}
\end{gather*}
\begin{framed}
\textbf{What capacitance is required for a less then 5\% ripple in a Half Wave Rectifier over a load of 16k$\Omega$?}
\begin{align*}
v_r &= \frac{v_pT}{RC} \\
\frac{v_r}{v_p} &= \frac{T}{RC} \\
\frac{T}{RC} &= 5\% \\
C &= \frac{T}{0.05 \cdot R} = 25\mu\textrm{F}
\end{align*}
\end{framed}
From the above example you can see that a larger capacitance gives a smaller ripple. But large capacitors get expensive. It might be worth trying a regulator...
\subsection{Regulators}
\begin{itemize}
\item Line Regulation - keeping a constant output voltage with a varying input voltage.
\item Load Regulation - keeping a constant output voltage with a varying output load.
\item Ripple Rejection
\end{itemize}
\subsubsection{Quantifying Power Supply Efficiency}
\begin{itemize}
\item Quiescent Current is the current used by the supply at idle.
\item Efficiency, $P_{out} / P_{in}$, is normally a large percentage.
\end{itemize}
\subsubsection{Linear vs Switching Regulators}
\begin{table}[H]
\centering
\caption{Tabulated differences between Linear and Switching regulators.}
\begin{tabular}{ll}
Linear & Switching \\
\hline
Operates in linear region & Operates as a switch \\
Simple & Complex \\
Inefficient & Efficient
\end{tabular}
\end{table}
Additionally to the table above:
\begin{itemize}
\item Linear regulators are stable, resulting in a small $v_r$, but are step-down only.
\item Switching regulators are more flexible then linear ones are they can be both boost (step-up) and buck (step-down) or boost-buck, however, they produce a lot of noise due to their switching nature.
\end{itemize}
\subsection{Types of Linear Regulator}
\subsubsection{Series Regulator}
A series regulator is (shock) placed in series with the voltage source. It has three pins, $v_{in}$, $v_{out}$ and \texttt{GND}.
\begin{figure}[H]
\centering
\includegraphics[width=0.5\textwidth]{images/linear-reg.png}
\caption{Block diagram for a series linear regulator.}
\end{figure}
Inside the regulator are four main components.
\begin{itemize}
\item $v_{ref}$, a voltage reference, normally a Zener diode.
\item An error block, which is physically an op-amp.
\item A sample stage, which is just a voltage divider.
\item A Control element, physically a transistor.
\end{itemize}
\subsubsection{Shunt Regulator}
A shunt regulator is similar to a series regulator but is placed in parallel with the load.
\begin{figure}[H]
\centering
\href{http://www.ti.com/product/LM431/datasheet}{\includegraphics[width=0.25\textwidth]{images/shunt-reg.png}}
\caption{Schematic of TI's LM431 shunt voltage regulator.}
\end{figure}
\subsection{Heat Flow in Linear Regulators}
\begin{framed}
\textbf{In a linear regulator dropping from 8V to 3V with a current of 1A, how much power must be dissipated in the regulator?}
\begin{align*}
P &= IV \\
P &= 1\cdot(8-5) \\
P &= 3\textrm{W}
\end{align*}
\end{framed}
As shown in the above example a lot of power, and therefore heat, is generated in a linear regulator. To remove this heat from the board we use a heat sink.
The maximum temperature a silicon semiconductor will work at is roughly 150 to 200 \degree C.
\subsection{Modeling Heat Flow}
\begin{align*}
\Delta T = P_j \theta
\end{align*}
Where:
\begin{table}[H]
\centering
\begin{tabular}{lll}
$\Delta T$ & is the temperature difference. \\
$P_j$ & is the power dissipated at the junction. \\
$\theta$ & is the thermal resistance, in kelvin per watt, $\frac{K}{W}$. \\
\end{tabular}
\end{table}
Normally the heat will flow though several boundaries. This requires you to equate several thermal resistances, for example the junction to case, $\theta_{jc}$ and case to ambient, $\theta_{ca}$.
\begin{gather*}
T_j - T_c = \theta_{jc}P_j \\
T_c - T_a = \theta_{ca}P_j \\
\downarrow \\
T_j = T_a + (\theta_{jc} + \theta_{ca})P_j
\end{gather*}
This can be concidered a general form, so adding a heat sink on the case would lead to the following:
\begin{gather*}
T_j = T_a + (\theta_{jc} + \theta_{cs} + \theta_{sa})P_j
\end{gather*}
\begin{framed}
\textbf{For a 3W transistor with the following thermal resistances, what is the junction temperature in a 25\degree C room?}
\begin{table}[H]
\centering
\begin{tabular}{lll}
$\theta_{jc}$ & of 5 K/W \\
$\theta_{cs}$ & of 2 K/W \\
$\theta_{sa}$ & of 10 K/W
\end{tabular}
\end{table}
\begin{align*}
T_j &= T_a + (\theta_{jc} + \theta_{cs} + \theta_{sa})P_j \\
&= 25 + (5 + 2 + 10) \times 3 \\
&= 25 + 17 \times 3 \\
T_j &= 76\degree C
\end{align*}
\end{framed}