From ee9371a8c70c1533ad766017cc483dd4f1b512ed Mon Sep 17 00:00:00 2001
From: Ryo Suzuki <reputeless+github@gmail.com>
Date: Wed, 27 Dec 2023 15:49:35 +0900
Subject: [PATCH] =?UTF-8?q?[=E5=85=B1=E9=80=9A]=20fix=20#1173?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

---
 Linux/CMakeLists.txt                          |    2 -
 .../src/Siv3D/FormatFloat/SivFormatFloat.cpp  |    2 +-
 .../src/Siv3D/LicenseManager/LicenseList.hpp  |   23 +
 Siv3D/src/Siv3D/ParseFloat/SivParseFloat.cpp  |   51 +-
 .../double-conversion/bignum-dtoa.cc          |    6 +-
 .../ThirdParty/double-conversion/bignum.cc    |    7 +-
 .../double-conversion/double-conversion.h     |   34 -
 .../double-conversion/double-to-string.cc     |   43 +-
 .../double-conversion/double-to-string.h      |  110 +-
 .../ThirdParty/double-conversion/fast-dtoa.cc |    4 +-
 .../double-conversion/fixed-dtoa.cc           |    4 +-
 Siv3D/src/ThirdParty/double-conversion/ieee.h |   25 +
 .../double-conversion/string-to-double.cc     |  779 ----
 .../double-conversion/string-to-double.h      |  237 --
 .../ThirdParty/double-conversion/strtod.cc    |  606 ---
 .../src/ThirdParty/double-conversion/strtod.h |   50 -
 .../src/ThirdParty/double-conversion/utils.h  |   74 +-
 Siv3D/src/ThirdParty/fast_float/fast_float.h  | 3661 +++++++++++++++++
 ThirdParty.md                                 |    3 +-
 Web/CMake/BuildThirdParty.cmake               |    2 -
 Web/CMakeLists.txt                            |    2 -
 WindowsDesktop/Siv3D.vcxproj                  |    9 +-
 WindowsDesktop/Siv3D.vcxproj.filters          |  117 +-
 macOS/OpenSiv3D.xcodeproj/project.pbxproj     |   32 +-
 24 files changed, 4000 insertions(+), 1883 deletions(-)
 delete mode 100644 Siv3D/src/ThirdParty/double-conversion/double-conversion.h
 delete mode 100644 Siv3D/src/ThirdParty/double-conversion/string-to-double.cc
 delete mode 100644 Siv3D/src/ThirdParty/double-conversion/string-to-double.h
 delete mode 100644 Siv3D/src/ThirdParty/double-conversion/strtod.cc
 delete mode 100644 Siv3D/src/ThirdParty/double-conversion/strtod.h
 create mode 100644 Siv3D/src/ThirdParty/fast_float/fast_float.h

diff --git a/Linux/CMakeLists.txt b/Linux/CMakeLists.txt
index 43b601ab0..84bab2f0a 100644
--- a/Linux/CMakeLists.txt
+++ b/Linux/CMakeLists.txt
@@ -867,8 +867,6 @@ set(SIV3D_INTERNAL_SOURCES
   ../Siv3D/src/ThirdParty/double-conversion/double-to-string.cc
   ../Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc
   ../Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc
-  ../Siv3D/src/ThirdParty/double-conversion/string-to-double.cc
-  ../Siv3D/src/ThirdParty/double-conversion/strtod.cc
 
   ../Siv3D/src/ThirdParty/easyexif/exif.cpp
 
diff --git a/Siv3D/src/Siv3D/FormatFloat/SivFormatFloat.cpp b/Siv3D/src/Siv3D/FormatFloat/SivFormatFloat.cpp
index 906024d87..05c880ed6 100644
--- a/Siv3D/src/Siv3D/FormatFloat/SivFormatFloat.cpp
+++ b/Siv3D/src/Siv3D/FormatFloat/SivFormatFloat.cpp
@@ -15,7 +15,7 @@
 # include <Siv3D/String.hpp>
 # include <Siv3D/FormatData.hpp>
 # include <Siv3D/PredefinedYesNo.hpp>
-# include <ThirdParty/double-conversion/double-conversion.h>
+# include <ThirdParty/double-conversion/double-to-string.h>
 
 namespace s3d
 {
diff --git a/Siv3D/src/Siv3D/LicenseManager/LicenseList.hpp b/Siv3D/src/Siv3D/LicenseManager/LicenseList.hpp
index 54e2ed5aa..a1e457665 100644
--- a/Siv3D/src/Siv3D/LicenseManager/LicenseList.hpp
+++ b/Siv3D/src/Siv3D/LicenseManager/LicenseList.hpp
@@ -417,6 +417,29 @@ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.)-"
 },
 
+{
+UR"-(fast_float)-",
+
+UR"-(Copyright (c) 2021 The fast_float authors)-",
+
+UR"-(Permission is hereby granted, free of charge, to any person obtaining a copy of this
+software and associated documentation files (the "Software"), to deal in the Software
+without restriction, including without limitation the rights to use, copy, modify,
+merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
+permit persons to whom the Software is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice shall be included in all copies
+or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
+INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
+CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
+OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)-"
+},
+
 {
 UR"-(fmt)-",
 
diff --git a/Siv3D/src/Siv3D/ParseFloat/SivParseFloat.cpp b/Siv3D/src/Siv3D/ParseFloat/SivParseFloat.cpp
index 62b67dadd..7ba37fe0f 100644
--- a/Siv3D/src/Siv3D/ParseFloat/SivParseFloat.cpp
+++ b/Siv3D/src/Siv3D/ParseFloat/SivParseFloat.cpp
@@ -9,55 +9,52 @@
 //
 //-----------------------------------------------
 
+# include <ThirdParty/fast_float/fast_float.h>
 # include <Siv3D/ParseFloat.hpp>
 # include <Siv3D/Error.hpp>
+# include <Siv3D/Char.hpp>
 # include <Siv3D/FormatLiteral.hpp>
-# include <ThirdParty/double-conversion/double-conversion.h>
 
 namespace s3d
 {
 	namespace detail
 	{
-		inline static constexpr double sNaN = std::numeric_limits<double>::signaling_NaN();
-
-		static double ParseDouble(const StringView s)
+		[[noreturn]]
+		static void ThrowParseError(const StringView s)
 		{
-			using namespace double_conversion;
+			throw ParseError{ U"ParseFloat(\"{}\") failed"_fmt(s) };
+		}
 
-			const int flags =
-				StringToDoubleConverter::ALLOW_LEADING_SPACES
-				| StringToDoubleConverter::ALLOW_TRAILING_SPACES
-				| StringToDoubleConverter::ALLOW_SPACES_AFTER_SIGN
-				| StringToDoubleConverter::ALLOW_CASE_INSENSIBILITY;
-			StringToDoubleConverter conv(flags, 0.0, sNaN, "inf", "nan");
+		static double ParseDouble(StringView s)
+		{
+			while (IsSpace(s.front()))
+			{
+				s.remove_prefix(1);
+			}
 
-			int unused;
-			const double result = conv.Siv3D_StringToIeee(s.data(), static_cast<int>(s.length()), true, &unused);
+			double result;
+			auto [p, ec] = fast_float::from_chars(s.data(), (s.data() + s.size()), result);
 
-			if (std::memcmp(&result, &sNaN, sizeof(double)) == 0)
+			if (ec != std::errc{})
 			{
-				throw ParseError(U"ParseFloat(\"{}\") failed"_fmt(s));
+				ThrowParseError(s);
 			}
 
 			return result;
 		}
 
 		template <class FloatType>
-		static Optional<FloatType> ParseFloatingPointOpt(const StringView s) noexcept
+		static Optional<FloatType> ParseFloatingPointOpt(StringView s) noexcept
 		{
-			using namespace double_conversion;
-
-			const int flags =
-				StringToDoubleConverter::ALLOW_LEADING_SPACES
-				| StringToDoubleConverter::ALLOW_TRAILING_SPACES
-				| StringToDoubleConverter::ALLOW_SPACES_AFTER_SIGN
-				| StringToDoubleConverter::ALLOW_CASE_INSENSIBILITY;
-			StringToDoubleConverter conv(flags, 0.0, sNaN, "inf", "nan");
+			while (IsSpace(s.front()))
+			{
+				s.remove_prefix(1);
+			}
 
-			int unused;
-			const double result = conv.Siv3D_StringToIeee(s.data(), static_cast<int>(s.length()), true, &unused);
+			double result;
+			auto [p, ec] = fast_float::from_chars(s.data(), (s.data() + s.size()), result);
 
-			if (std::memcmp(&result, &sNaN, sizeof(double)) == 0)
+			if (ec != std::errc{})
 			{
 				return none;
 			}
diff --git a/Siv3D/src/ThirdParty/double-conversion/bignum-dtoa.cc b/Siv3D/src/ThirdParty/double-conversion/bignum-dtoa.cc
index abdd71452..15123e6a6 100644
--- a/Siv3D/src/ThirdParty/double-conversion/bignum-dtoa.cc
+++ b/Siv3D/src/ThirdParty/double-conversion/bignum-dtoa.cc
@@ -276,7 +276,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
 
 // Let v = numerator / denominator < 10.
 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
-// from left to right. Once 'count' digits have been produced we decide wether
+// from left to right. Once 'count' digits have been produced we decide whether
 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
 // as 9.999999 propagate a carry all the way, and change the
 // exponent (decimal_point), when rounding upwards.
@@ -370,7 +370,7 @@ static void BignumToFixed(int requested_digits, int* decimal_point,
 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
 // v = f * 2^exponent and 2^52 <= f < 2^53.
 // v is hence a normalized double with the given exponent. The output is an
-// approximation for the exponent of the decimal approimation .digits * 10^k.
+// approximation for the exponent of the decimal approximation .digits * 10^k.
 //
 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
 // Note: this property holds for v's upper boundary m+ too.
@@ -548,7 +548,7 @@ static void InitialScaledStartValuesNegativeExponentNegativePower(
 //
 // Let ep == estimated_power, then the returned values will satisfy:
 //  v / 10^ep = numerator / denominator.
-//  v's boundarys m- and m+:
+//  v's boundaries m- and m+:
 //    m- / 10^ep == v / 10^ep - delta_minus / denominator
 //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
 //  Or in other words:
diff --git a/Siv3D/src/ThirdParty/double-conversion/bignum.cc b/Siv3D/src/ThirdParty/double-conversion/bignum.cc
index 8667d84d4..5c74d70d3 100644
--- a/Siv3D/src/ThirdParty/double-conversion/bignum.cc
+++ b/Siv3D/src/ThirdParty/double-conversion/bignum.cc
@@ -136,7 +136,7 @@ void Bignum::AssignHexString(Vector<const char> value) {
   DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4);  // TODO: static_assert
   // Accumulates converted hex digits until at least kBigitSize bits.
   // Works with non-factor-of-four kBigitSizes.
-  uint64_t tmp = 0;  // Accumulates converted hex digits until at least
+  uint64_t tmp = 0;
   for (int cnt = 0; !value.is_empty(); value.pop_back()) {
     tmp |= (HexCharValue(value.last()) << cnt);
     if ((cnt += 4) >= kBigitSize) {
@@ -146,7 +146,8 @@ void Bignum::AssignHexString(Vector<const char> value) {
     }
   }
   if (tmp > 0) {
-    RawBigit(used_bigits_++) = static_cast<Bignum::Chunk>(tmp);
+    DOUBLE_CONVERSION_ASSERT(tmp <= kBigitMask);
+    RawBigit(used_bigits_++) = static_cast<Bignum::Chunk>(tmp & kBigitMask);
   }
   Clamp();
 }
@@ -203,7 +204,7 @@ void Bignum::AddBignum(const Bignum& other) {
     carry = sum >> kBigitSize;
     ++bigit_pos;
   }
-  used_bigits_ = static_cast<int16_t>((std::max)(bigit_pos, static_cast<int>(used_bigits_)));
+  used_bigits_ = static_cast<int16_t>(std::max(bigit_pos, static_cast<int>(used_bigits_)));
   DOUBLE_CONVERSION_ASSERT(IsClamped());
 }
 
diff --git a/Siv3D/src/ThirdParty/double-conversion/double-conversion.h b/Siv3D/src/ThirdParty/double-conversion/double-conversion.h
deleted file mode 100644
index 6e8884d84..000000000
--- a/Siv3D/src/ThirdParty/double-conversion/double-conversion.h
+++ /dev/null
@@ -1,34 +0,0 @@
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-//     * Redistributions of source code must retain the above copyright
-//       notice, this list of conditions and the following disclaimer.
-//     * Redistributions in binary form must reproduce the above
-//       copyright notice, this list of conditions and the following
-//       disclaimer in the documentation and/or other materials provided
-//       with the distribution.
-//     * Neither the name of Google Inc. nor the names of its
-//       contributors may be used to endorse or promote products derived
-//       from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
-#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
-
-#include "string-to-double.h"
-#include "double-to-string.h"
-
-#endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
diff --git a/Siv3D/src/ThirdParty/double-conversion/double-to-string.cc b/Siv3D/src/ThirdParty/double-conversion/double-to-string.cc
index 4562f99f4..215eaa96d 100644
--- a/Siv3D/src/ThirdParty/double-conversion/double-to-string.cc
+++ b/Siv3D/src/ThirdParty/double-conversion/double-to-string.cc
@@ -56,7 +56,7 @@ bool DoubleToStringConverter::HandleSpecialValues(
     StringBuilder* result_builder) const {
   Double double_inspect(value);
   if (double_inspect.IsInfinite()) {
-    if (infinity_symbol_ == NULL) return false;
+    if (infinity_symbol_ == DOUBLE_CONVERSION_NULLPTR) return false;
     if (value < 0) {
       result_builder->AddCharacter('-');
     }
@@ -64,7 +64,7 @@ bool DoubleToStringConverter::HandleSpecialValues(
     return true;
   }
   if (double_inspect.IsNan()) {
-    if (nan_symbol_ == NULL) return false;
+    if (nan_symbol_ == DOUBLE_CONVERSION_NULLPTR) return false;
     result_builder->AddString(nan_symbol_);
     return true;
   }
@@ -79,7 +79,14 @@ void DoubleToStringConverter::CreateExponentialRepresentation(
     StringBuilder* result_builder) const {
   DOUBLE_CONVERSION_ASSERT(length != 0);
   result_builder->AddCharacter(decimal_digits[0]);
-  if (length != 1) {
+  if (length == 1) {
+    if ((flags_ & EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL) != 0) {
+      result_builder->AddCharacter('.');
+      if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL) != 0) {
+          result_builder->AddCharacter('0');
+      }
+    }
+  } else {
     result_builder->AddCharacter('.');
     result_builder->AddSubstring(&decimal_digits[1], length-1);
   }
@@ -92,19 +99,19 @@ void DoubleToStringConverter::CreateExponentialRepresentation(
       result_builder->AddCharacter('+');
     }
   }
-  if (exponent == 0) {
-    result_builder->AddCharacter('0');
-    return;
-  }
   DOUBLE_CONVERSION_ASSERT(exponent < 1e4);
   // Changing this constant requires updating the comment of DoubleToStringConverter constructor
   const int kMaxExponentLength = 5;
   char buffer[kMaxExponentLength + 1];
   buffer[kMaxExponentLength] = '\0';
   int first_char_pos = kMaxExponentLength;
-  while (exponent > 0) {
-    buffer[--first_char_pos] = '0' + (exponent % 10);
-    exponent /= 10;
+  if (exponent == 0) {
+    buffer[--first_char_pos] = '0';
+  } else {
+    while (exponent > 0) {
+      buffer[--first_char_pos] = '0' + (exponent % 10);
+      exponent /= 10;
+    }
   }
   // Add prefix '0' to make exponent width >= min(min_exponent_with_, kMaxExponentLength)
   // For example: convert 1e+9 -> 1e+09, if min_exponent_with_ is set to 2
@@ -327,9 +334,21 @@ bool DoubleToStringConverter::ToPrecision(double value,
   int exponent = decimal_point - 1;
 
   int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0;
-  if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) ||
+  bool as_exponential =
+      (-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) ||
       (decimal_point - precision + extra_zero >
-       max_trailing_padding_zeroes_in_precision_mode_)) {
+       max_trailing_padding_zeroes_in_precision_mode_);
+  if ((flags_ & NO_TRAILING_ZERO) != 0) {
+    // Truncate trailing zeros that occur after the decimal point (if exponential,
+    // that is everything after the first digit).
+    int stop = as_exponential ? 1 : std::max(1, decimal_point);
+    while (decimal_rep_length > stop && decimal_rep[decimal_rep_length - 1] == '0') {
+      --decimal_rep_length;
+    }
+    // Clamp precision to avoid the code below re-adding the zeros.
+    precision = std::min(precision, decimal_rep_length);
+  }
+  if (as_exponential) {
     // Fill buffer to contain 'precision' digits.
     // Usually the buffer is already at the correct length, but 'DoubleToAscii'
     // is allowed to return less characters.
diff --git a/Siv3D/src/ThirdParty/double-conversion/double-to-string.h b/Siv3D/src/ThirdParty/double-conversion/double-to-string.h
index a44fa3c7e..abe60e881 100644
--- a/Siv3D/src/ThirdParty/double-conversion/double-to-string.h
+++ b/Siv3D/src/ThirdParty/double-conversion/double-to-string.h
@@ -38,7 +38,7 @@ class DoubleToStringConverter {
   // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
   // function returns false.
   static const int kMaxFixedDigitsBeforePoint = 60;
-  static const int kMaxFixedDigitsAfterPoint = 60;
+  static const int kMaxFixedDigitsAfterPoint = 100;
 
   // When calling ToExponential with a requested_digits
   // parameter > kMaxExponentialDigits then the function returns false.
@@ -50,12 +50,37 @@ class DoubleToStringConverter {
   static const int kMinPrecisionDigits = 1;
   static const int kMaxPrecisionDigits = 120;
 
+  // The maximal number of digits that are needed to emit a double in base 10.
+  // A higher precision can be achieved by using more digits, but the shortest
+  // accurate representation of any double will never use more digits than
+  // kBase10MaximalLength.
+  // Note that DoubleToAscii null-terminates its input. So the given buffer
+  // should be at least kBase10MaximalLength + 1 characters long.
+  static const int kBase10MaximalLength = 17;
+
+  // The maximal number of digits that are needed to emit a single in base 10.
+  // A higher precision can be achieved by using more digits, but the shortest
+  // accurate representation of any single will never use more digits than
+  // kBase10MaximalLengthSingle.
+  static const int kBase10MaximalLengthSingle = 9;
+
+  // The length of the longest string that 'ToShortest' can produce when the
+  // converter is instantiated with EcmaScript defaults (see
+  // 'EcmaScriptConverter')
+  // This value does not include the trailing '\0' character.
+  // This amount of characters is needed for negative values that hit the
+  // 'decimal_in_shortest_low' limit. For example: "-0.0000033333333333333333"
+  static const int kMaxCharsEcmaScriptShortest = 25;
+
   enum Flags {
     NO_FLAGS = 0,
     EMIT_POSITIVE_EXPONENT_SIGN = 1,
     EMIT_TRAILING_DECIMAL_POINT = 2,
     EMIT_TRAILING_ZERO_AFTER_POINT = 4,
-    UNIQUE_ZERO = 8
+    UNIQUE_ZERO = 8,
+    NO_TRAILING_ZERO = 16,
+    EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL = 32,
+    EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL = 64
   };
 
   // Flags should be a bit-or combination of the possible Flags-enum.
@@ -67,9 +92,20 @@ class DoubleToStringConverter {
   //    Example: 2345.0 is converted to "2345.".
   //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
   //    emits a trailing '0'-character. This flag requires the
-  //    EXMIT_TRAILING_DECIMAL_POINT flag.
+  //    EMIT_TRAILING_DECIMAL_POINT flag.
   //    Example: 2345.0 is converted to "2345.0".
   //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
+  //  - NO_TRAILING_ZERO: Trailing zeros are removed from the fractional portion
+  //    of the result in precision mode. Matches printf's %g.
+  //    When EMIT_TRAILING_ZERO_AFTER_POINT is also given, one trailing zero is
+  //    preserved.
+  //  - EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL: when the input number has
+  //    exactly one significant digit and is converted into exponent form then a
+  //    trailing decimal point is appended to the significand in shortest mode
+  //    or in precision mode with one requested digit.
+  //  - EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL: in addition to a trailing
+  //    decimal point emits a trailing '0'-character. This flag requires the
+  //    EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag.
   //
   // Infinity symbol and nan_symbol provide the string representation for these
   // special values. If the string is NULL and the special value is encountered
@@ -96,7 +132,7 @@ class DoubleToStringConverter {
   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
-  // Similarily the converter may add up to
+  // Similarly the converter may add up to
   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
   // returning an exponential representation. A zero added by the
   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
@@ -105,6 +141,22 @@ class DoubleToStringConverter {
   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
   //
+  // When converting numbers with exactly one significant digit to exponent
+  // form in shortest mode or in precision mode with one requested digit, the
+  // EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT flags have
+  // no effect. Use the EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag to
+  // append a decimal point in this case and the
+  // EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL flag to also append a
+  // '0'-character in this case.
+  // Example with decimal_in_shortest_low = 0:
+  //   ToShortest(0.0009) -> "9e-4"
+  //     with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL deactivated.
+  //   ToShortest(0.0009) -> "9.e-4"
+  //     with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated.
+  //   ToShortest(0.0009) -> "9.0e-4"
+  //     with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated and
+  //     EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL activated.
+  //
   // The min_exponent_width is used for exponential representations.
   // The converter adds leading '0's to the exponent until the exponent
   // is at least min_exponent_width digits long.
@@ -137,6 +189,14 @@ class DoubleToStringConverter {
   }
 
   // Returns a converter following the EcmaScript specification.
+  //
+  // Flags: UNIQUE_ZERO and EMIT_POSITIVE_EXPONENT_SIGN.
+  // Special values: "Infinity" and "NaN".
+  // Lower case 'e' for exponential values.
+  // decimal_in_shortest_low: -6
+  // decimal_in_shortest_high: 21
+  // max_leading_padding_zeroes_in_precision_mode: 6
+  // max_trailing_padding_zeroes_in_precision_mode: 0
   static const DoubleToStringConverter& EcmaScriptConverter();
 
   // Computes the shortest string of digits that correctly represent the input
@@ -146,7 +206,7 @@ class DoubleToStringConverter {
   // Example with decimal_in_shortest_low = -6,
   //              decimal_in_shortest_high = 21,
   //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
-  //              EMIT_TRAILING_DECIMAL_POINT deactived:
+  //              EMIT_TRAILING_DECIMAL_POINT deactivated:
   //   ToShortest(0.000001)  -> "0.000001"
   //   ToShortest(0.0000001) -> "1e-7"
   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
@@ -162,6 +222,21 @@ class DoubleToStringConverter {
   // Returns true if the conversion succeeds. The conversion always succeeds
   // except when the input value is special and no infinity_symbol or
   // nan_symbol has been given to the constructor.
+  //
+  // The length of the longest result is the maximum of the length of the
+  // following string representations (each with possible examples):
+  // - NaN and negative infinity: "NaN", "-Infinity", "-inf".
+  // - -10^(decimal_in_shortest_high - 1):
+  //      "-100000000000000000000", "-1000000000000000.0"
+  // - the longest string in range [0; -10^decimal_in_shortest_low]. Generally,
+  //   this string is 3 + kBase10MaximalLength - decimal_in_shortest_low.
+  //   (Sign, '0', decimal point, padding zeroes for decimal_in_shortest_low,
+  //   and the significant digits).
+  //      "-0.0000033333333333333333", "-0.0012345678901234567"
+  // - the longest exponential representation. (A negative number with
+  //   kBase10MaximalLength significant digits).
+  //      "-1.7976931348623157e+308", "-1.7976931348623157E308"
+  // In addition, the buffer must be able to hold the trailing '\0' character.
   bool ToShortest(double value, StringBuilder* result_builder) const {
     return ToShortestIeeeNumber(value, result_builder, SHORTEST);
   }
@@ -202,9 +277,11 @@ class DoubleToStringConverter {
   //     been provided to the constructor,
   //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
   //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
-  // The last two conditions imply that the result will never contain more than
-  // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
+  // The last two conditions imply that the result for non-special values never
+  // contains more than
+  //  1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
   // (one additional character for the sign, and one for the decimal point).
+  // In addition, the buffer must be able to hold the trailing '\0' character.
   bool ToFixed(double value,
                int requested_digits,
                StringBuilder* result_builder) const;
@@ -233,14 +310,17 @@ class DoubleToStringConverter {
   //   - the input value is special and no infinity_symbol or nan_symbol has
   //     been provided to the constructor,
   //   - 'requested_digits' > kMaxExponentialDigits.
-  // The last condition implies that the result will never contain more than
+  //
+  // The last condition implies that the result never contains more than
   // kMaxExponentialDigits + 8 characters (the sign, the digit before the
   // decimal point, the decimal point, the exponent character, the
   // exponent's sign, and at most 3 exponent digits).
+  // In addition, the buffer must be able to hold the trailing '\0' character.
   bool ToExponential(double value,
                      int requested_digits,
                      StringBuilder* result_builder) const;
 
+
   // Computes 'precision' leading digits of the given 'value' and returns them
   // either in exponential or decimal format, depending on
   // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
@@ -250,7 +330,7 @@ class DoubleToStringConverter {
   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
-  // Similarily the converter may add up to
+  // Similarly the converter may add up to
   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
   // returning an exponential representation. A zero added by the
   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
@@ -272,9 +352,11 @@ class DoubleToStringConverter {
   //     been provided to the constructor,
   //   - precision < kMinPericisionDigits
   //   - precision > kMaxPrecisionDigits
-  // The last condition implies that the result will never contain more than
+  //
+  // The last condition implies that the result never contains more than
   // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
   // exponent character, the exponent's sign, and at most 3 exponent digits).
+  // In addition, the buffer must be able to hold the trailing '\0' character.
   bool ToPrecision(double value,
                    int precision,
                    StringBuilder* result_builder) const;
@@ -294,14 +376,6 @@ class DoubleToStringConverter {
     PRECISION
   };
 
-  // The maximal number of digits that are needed to emit a double in base 10.
-  // A higher precision can be achieved by using more digits, but the shortest
-  // accurate representation of any double will never use more digits than
-  // kBase10MaximalLength.
-  // Note that DoubleToAscii null-terminates its input. So the given buffer
-  // should be at least kBase10MaximalLength + 1 characters long.
-  static const int kBase10MaximalLength = 17;
-
   // Converts the given double 'v' to digit characters. 'v' must not be NaN,
   // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also
   // applies to 'v' after it has been casted to a single-precision float. That
diff --git a/Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc b/Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc
index f47028643..d7a23984d 100644
--- a/Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc
+++ b/Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc
@@ -565,7 +565,7 @@ static bool Grisu3(double v,
   // the difference between w and boundary_minus/plus (a power of 2) and to
   // compute scaled_boundary_minus/plus by subtracting/adding from
   // scaled_w. However the code becomes much less readable and the speed
-  // enhancements are not terriffic.
+  // enhancements are not terrific.
   DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
   DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
 
@@ -573,7 +573,7 @@ static bool Grisu3(double v,
   // v == (double) (scaled_w * 10^-mk).
   // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
   // integer than it will be updated. For instance if scaled_w == 1.23 then
-  // the buffer will be filled with "123" und the decimal_exponent will be
+  // the buffer will be filled with "123" and the decimal_exponent will be
   // decreased by 2.
   int kappa;
   bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
diff --git a/Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc b/Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc
index ab6ef10eb..e739b1980 100644
--- a/Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc
+++ b/Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc
@@ -395,8 +395,8 @@ bool FastFixedDtoa(double v,
   TrimZeros(buffer, length, decimal_point);
   buffer[*length] = '\0';
   if ((*length) == 0) {
-    // The string is empty and the decimal_point thus has no importance. Mimick
-    // Gay's dtoa and and set it to -fractional_count.
+    // The string is empty and the decimal_point thus has no importance. Mimic
+    // Gay's dtoa and set it to -fractional_count.
     *decimal_point = -fractional_count;
   }
   return true;
diff --git a/Siv3D/src/ThirdParty/double-conversion/ieee.h b/Siv3D/src/ThirdParty/double-conversion/ieee.h
index 3c2a5979f..9203f4d55 100644
--- a/Siv3D/src/ThirdParty/double-conversion/ieee.h
+++ b/Siv3D/src/ThirdParty/double-conversion/ieee.h
@@ -150,11 +150,19 @@ class Double {
   }
 
   bool IsQuietNan() const {
+#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
+    return IsNan() && ((AsUint64() & kQuietNanBit) == 0);
+#else
     return IsNan() && ((AsUint64() & kQuietNanBit) != 0);
+#endif
   }
 
   bool IsSignalingNan() const {
+#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
+    return IsNan() && ((AsUint64() & kQuietNanBit) != 0);
+#else
     return IsNan() && ((AsUint64() & kQuietNanBit) == 0);
+#endif
   }
 
 
@@ -236,7 +244,12 @@ class Double {
  private:
   static const int kDenormalExponent = -kExponentBias + 1;
   static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000);
+#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
+  static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF7FFFF, FFFFFFFF);
+#else
   static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000);
+#endif
+
 
   const uint64_t d64_;
 
@@ -336,11 +349,19 @@ class Single {
   }
 
   bool IsQuietNan() const {
+#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
+    return IsNan() && ((AsUint32() & kQuietNanBit) == 0);
+#else
     return IsNan() && ((AsUint32() & kQuietNanBit) != 0);
+#endif
   }
 
   bool IsSignalingNan() const {
+#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
+    return IsNan() && ((AsUint32() & kQuietNanBit) != 0);
+#else
     return IsNan() && ((AsUint32() & kQuietNanBit) == 0);
+#endif
   }
 
 
@@ -410,7 +431,11 @@ class Single {
   static const int kDenormalExponent = -kExponentBias + 1;
   static const int kMaxExponent = 0xFF - kExponentBias;
   static const uint32_t kInfinity = 0x7F800000;
+#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
+  static const uint32_t kNaN = 0x7FBFFFFF;
+#else
   static const uint32_t kNaN = 0x7FC00000;
+#endif
 
   const uint32_t d32_;
 
diff --git a/Siv3D/src/ThirdParty/double-conversion/string-to-double.cc b/Siv3D/src/ThirdParty/double-conversion/string-to-double.cc
deleted file mode 100644
index b95180600..000000000
--- a/Siv3D/src/ThirdParty/double-conversion/string-to-double.cc
+++ /dev/null
@@ -1,779 +0,0 @@
-// Copyright 2010 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-//     * Redistributions of source code must retain the above copyright
-//       notice, this list of conditions and the following disclaimer.
-//     * Redistributions in binary form must reproduce the above
-//       copyright notice, this list of conditions and the following
-//       disclaimer in the documentation and/or other materials provided
-//       with the distribution.
-//     * Neither the name of Google Inc. nor the names of its
-//       contributors may be used to endorse or promote products derived
-//       from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include <climits>
-#include <locale>
-#include <cmath>
-
-#include "string-to-double.h"
-
-#include "ieee.h"
-#include "strtod.h"
-#include "utils.h"
-
-namespace double_conversion {
-
-namespace {
-
-inline char ToLower(char ch) {
-  static const std::ctype<char>& cType =
-      std::use_facet<std::ctype<char> >(std::locale::classic());
-  return cType.tolower(ch);
-}
-
-inline char Pass(char ch) {
-  return ch;
-}
-
-template <class Iterator, class Converter>
-static inline bool ConsumeSubStringImpl(Iterator* current,
-                                        Iterator end,
-                                        const char* substring,
-                                        Converter converter) {
-  DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring);
-  for (substring++; *substring != '\0'; substring++) {
-    ++*current;
-    if (*current == end || converter(**current) != *substring) {
-      return false;
-    }
-  }
-  ++*current;
-  return true;
-}
-
-// Consumes the given substring from the iterator.
-// Returns false, if the substring does not match.
-template <class Iterator>
-static bool ConsumeSubString(Iterator* current,
-                             Iterator end,
-                             const char* substring,
-                             bool allow_case_insensitivity) {
-  if (allow_case_insensitivity) {
-    return ConsumeSubStringImpl(current, end, substring, ToLower);
-  } else {
-    return ConsumeSubStringImpl(current, end, substring, Pass);
-  }
-}
-
-// Consumes first character of the str is equal to ch
-inline bool ConsumeFirstCharacter(char ch,
-                                         const char* str,
-                                         bool case_insensitivity) {
-  return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0];
-}
-}  // namespace
-
-// Maximum number of significant digits in decimal representation.
-// The longest possible double in decimal representation is
-// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
-// (768 digits). If we parse a number whose first digits are equal to a
-// mean of 2 adjacent doubles (that could have up to 769 digits) the result
-// must be rounded to the bigger one unless the tail consists of zeros, so
-// we don't need to preserve all the digits.
-const int kMaxSignificantDigits = 772;
-
-
-static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
-static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7);
-
-
-static const uc16 kWhitespaceTable16[] = {
-  160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
-  8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
-};
-static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16);
-
-
-static bool isWhitespace(int x) {
-  if (x < 128) {
-    for (int i = 0; i < kWhitespaceTable7Length; i++) {
-      if (kWhitespaceTable7[i] == x) return true;
-    }
-  } else {
-    for (int i = 0; i < kWhitespaceTable16Length; i++) {
-      if (kWhitespaceTable16[i] == x) return true;
-    }
-  }
-  return false;
-}
-
-
-// Returns true if a nonspace found and false if the end has reached.
-template <class Iterator>
-static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
-  while (*current != end) {
-    if (!isWhitespace(**current)) return true;
-    ++*current;
-  }
-  return false;
-}
-
-
-static bool isDigit(int x, int radix) {
-  return (x >= '0' && x <= '9' && x < '0' + radix)
-      || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
-      || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
-}
-
-
-static double SignedZero(bool sign) {
-  return sign ? -0.0 : 0.0;
-}
-
-
-// Returns true if 'c' is a decimal digit that is valid for the given radix.
-//
-// The function is small and could be inlined, but VS2012 emitted a warning
-// because it constant-propagated the radix and concluded that the last
-// condition was always true. By moving it into a separate function the
-// compiler wouldn't warn anymore.
-#ifdef _MSC_VER
-#pragma optimize("",off)
-static bool IsDecimalDigitForRadix(int c, int radix) {
-  return '0' <= c && c <= '9' && (c - '0') < radix;
-}
-#pragma optimize("",on)
-#else
-static bool inline IsDecimalDigitForRadix(int c, int radix) {
-  return '0' <= c && c <= '9' && (c - '0') < radix;
-}
-#endif
-// Returns true if 'c' is a character digit that is valid for the given radix.
-// The 'a_character' should be 'a' or 'A'.
-//
-// The function is small and could be inlined, but VS2012 emitted a warning
-// because it constant-propagated the radix and concluded that the first
-// condition was always false. By moving it into a separate function the
-// compiler wouldn't warn anymore.
-static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
-  return radix > 10 && c >= a_character && c < a_character + radix - 10;
-}
-
-// Returns true, when the iterator is equal to end.
-template<class Iterator>
-static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) {
-  if (separator == StringToDoubleConverter::kNoSeparator) {
-    ++(*it);
-    return *it == end;
-  }
-  if (!isDigit(**it, base)) {
-    ++(*it);
-    return *it == end;
-  }
-  ++(*it);
-  if (*it == end) return true;
-  if (*it + 1 == end) return false;
-  if (**it == separator && isDigit(*(*it + 1), base)) {
-    ++(*it);
-  }
-  return *it == end;
-}
-
-// Checks whether the string in the range start-end is a hex-float string.
-// This function assumes that the leading '0x'/'0X' is already consumed.
-//
-// Hex float strings are of one of the following forms:
-//   - hex_digits+ 'p' ('+'|'-')? exponent_digits+
-//   - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+
-//   - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+
-template<class Iterator>
-static bool IsHexFloatString(Iterator start,
-                             Iterator end,
-                             uc16 separator,
-                             bool allow_trailing_junk) {
-  DOUBLE_CONVERSION_ASSERT(start != end);
-
-  Iterator current = start;
-
-  bool saw_digit = false;
-  while (isDigit(*current, 16)) {
-    saw_digit = true;
-    if (Advance(&current, separator, 16, end)) return false;
-  }
-  if (*current == '.') {
-    if (Advance(&current, separator, 16, end)) return false;
-    while (isDigit(*current, 16)) {
-      saw_digit = true;
-      if (Advance(&current, separator, 16, end)) return false;
-    }
-  }
-  if (!saw_digit) return false;
-  if (*current != 'p' && *current != 'P') return false;
-  if (Advance(&current, separator, 16, end)) return false;
-  if (*current == '+' || *current == '-') {
-    if (Advance(&current, separator, 16, end)) return false;
-  }
-  if (!isDigit(*current, 10)) return false;
-  if (Advance(&current, separator, 16, end)) return true;
-  while (isDigit(*current, 10)) {
-    if (Advance(&current, separator, 16, end)) return true;
-  }
-  return allow_trailing_junk || !AdvanceToNonspace(&current, end);
-}
-
-
-// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
-//
-// If parse_as_hex_float is true, then the string must be a valid
-// hex-float.
-template <int radix_log_2, class Iterator>
-static double RadixStringToIeee(Iterator* current,
-                                Iterator end,
-                                bool sign,
-                                uc16 separator,
-                                bool parse_as_hex_float,
-                                bool allow_trailing_junk,
-                                double junk_string_value,
-                                bool read_as_double,
-                                bool* result_is_junk) {
-  DOUBLE_CONVERSION_ASSERT(*current != end);
-  DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float ||
-      IsHexFloatString(*current, end, separator, allow_trailing_junk));
-
-  const int kDoubleSize = Double::kSignificandSize;
-  const int kSingleSize = Single::kSignificandSize;
-  const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
-
-  *result_is_junk = true;
-
-  int64_t number = 0;
-  int exponent = 0;
-  const int radix = (1 << radix_log_2);
-  // Whether we have encountered a '.' and are parsing the decimal digits.
-  // Only relevant if parse_as_hex_float is true.
-  bool post_decimal = false;
-
-  // Skip leading 0s.
-  while (**current == '0') {
-    if (Advance(current, separator, radix, end)) {
-      *result_is_junk = false;
-      return SignedZero(sign);
-    }
-  }
-
-  while (true) {
-    int digit;
-    if (IsDecimalDigitForRadix(**current, radix)) {
-      digit = static_cast<char>(**current) - '0';
-      if (post_decimal) exponent -= radix_log_2;
-    } else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
-      digit = static_cast<char>(**current) - 'a' + 10;
-      if (post_decimal) exponent -= radix_log_2;
-    } else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
-      digit = static_cast<char>(**current) - 'A' + 10;
-      if (post_decimal) exponent -= radix_log_2;
-    } else if (parse_as_hex_float && **current == '.') {
-      post_decimal = true;
-      Advance(current, separator, radix, end);
-      DOUBLE_CONVERSION_ASSERT(*current != end);
-      continue;
-    } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) {
-      break;
-    } else {
-      if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
-        break;
-      } else {
-        return junk_string_value;
-      }
-    }
-
-    number = number * radix + digit;
-    int overflow = static_cast<int>(number >> kSignificandSize);
-    if (overflow != 0) {
-      // Overflow occurred. Need to determine which direction to round the
-      // result.
-      int overflow_bits_count = 1;
-      while (overflow > 1) {
-        overflow_bits_count++;
-        overflow >>= 1;
-      }
-
-      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
-      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
-      number >>= overflow_bits_count;
-      exponent += overflow_bits_count;
-
-      bool zero_tail = true;
-      for (;;) {
-        if (Advance(current, separator, radix, end)) break;
-        if (parse_as_hex_float && **current == '.') {
-          // Just run over the '.'. We are just trying to see whether there is
-          // a non-zero digit somewhere.
-          Advance(current, separator, radix, end);
-          DOUBLE_CONVERSION_ASSERT(*current != end);
-          post_decimal = true;
-        }
-        if (!isDigit(**current, radix)) break;
-        zero_tail = zero_tail && **current == '0';
-        if (!post_decimal) exponent += radix_log_2;
-      }
-
-      if (!parse_as_hex_float &&
-          !allow_trailing_junk &&
-          AdvanceToNonspace(current, end)) {
-        return junk_string_value;
-      }
-
-      int middle_value = (1 << (overflow_bits_count - 1));
-      if (dropped_bits > middle_value) {
-        number++;  // Rounding up.
-      } else if (dropped_bits == middle_value) {
-        // Rounding to even to consistency with decimals: half-way case rounds
-        // up if significant part is odd and down otherwise.
-        if ((number & 1) != 0 || !zero_tail) {
-          number++;  // Rounding up.
-        }
-      }
-
-      // Rounding up may cause overflow.
-      if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
-        exponent++;
-        number >>= 1;
-      }
-      break;
-    }
-    if (Advance(current, separator, radix, end)) break;
-  }
-
-  DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize));
-  DOUBLE_CONVERSION_ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
-
-  *result_is_junk = false;
-
-  if (parse_as_hex_float) {
-    DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P');
-    Advance(current, separator, radix, end);
-    DOUBLE_CONVERSION_ASSERT(*current != end);
-    bool is_negative = false;
-    if (**current == '+') {
-      Advance(current, separator, radix, end);
-      DOUBLE_CONVERSION_ASSERT(*current != end);
-    } else if (**current == '-') {
-      is_negative = true;
-      Advance(current, separator, radix, end);
-      DOUBLE_CONVERSION_ASSERT(*current != end);
-    }
-    int written_exponent = 0;
-    while (IsDecimalDigitForRadix(**current, 10)) {
-      // No need to read exponents if they are too big. That could potentially overflow
-      // the `written_exponent` variable.
-      if (abs(written_exponent) <= 100 * Double::kMaxExponent) {
-        written_exponent = 10 * written_exponent + **current - '0';
-      }
-      if (Advance(current, separator, radix, end)) break;
-    }
-    if (is_negative) written_exponent = -written_exponent;
-    exponent += written_exponent;
-  }
-
-  if (exponent == 0 || number == 0) {
-    if (sign) {
-      if (number == 0) return -0.0;
-      number = -number;
-    }
-    return static_cast<double>(number);
-  }
-
-  DOUBLE_CONVERSION_ASSERT(number != 0);
-  double result = Double(DiyFp(number, exponent)).value();
-  return sign ? -result : result;
-}
-
-template <class Iterator>
-double StringToDoubleConverter::StringToIeee(
-    Iterator input,
-    int length,
-    bool read_as_double,
-    int* processed_characters_count) const {
-  Iterator current = input;
-  Iterator end = input + length;
-
-  *processed_characters_count = 0;
-
-  const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
-  const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
-  const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
-  const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
-  const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0;
-
-  // To make sure that iterator dereferencing is valid the following
-  // convention is used:
-  // 1. Each '++current' statement is followed by check for equality to 'end'.
-  // 2. If AdvanceToNonspace returned false then current == end.
-  // 3. If 'current' becomes equal to 'end' the function returns or goes to
-  // 'parsing_done'.
-  // 4. 'current' is not dereferenced after the 'parsing_done' label.
-  // 5. Code before 'parsing_done' may rely on 'current != end'.
-  if (current == end) return empty_string_value_;
-
-  if (allow_leading_spaces || allow_trailing_spaces) {
-    if (!AdvanceToNonspace(&current, end)) {
-      *processed_characters_count = static_cast<int>(current - input);
-      return empty_string_value_;
-    }
-    if (!allow_leading_spaces && (input != current)) {
-      // No leading spaces allowed, but AdvanceToNonspace moved forward.
-      return junk_string_value_;
-    }
-  }
-
-  // Exponent will be adjusted if insignificant digits of the integer part
-  // or insignificant leading zeros of the fractional part are dropped.
-  int exponent = 0;
-  int significant_digits = 0;
-  int insignificant_digits = 0;
-  bool nonzero_digit_dropped = false;
-
-  bool sign = false;
-
-  if (*current == '+' || *current == '-') {
-    sign = (*current == '-');
-    ++current;
-    Iterator next_non_space = current;
-    // Skip following spaces (if allowed).
-    if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
-    if (!allow_spaces_after_sign && (current != next_non_space)) {
-      return junk_string_value_;
-    }
-    current = next_non_space;
-  }
-
-  if (infinity_symbol_ != NULL) {
-    if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) {
-      if (!ConsumeSubString(&current, end, infinity_symbol_, allow_case_insensitivity)) {
-        return junk_string_value_;
-      }
-
-      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
-        return junk_string_value_;
-      }
-      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
-        return junk_string_value_;
-      }
-
-      *processed_characters_count = static_cast<int>(current - input);
-      return sign ? -Double::Infinity() : Double::Infinity();
-    }
-  }
-
-  if (nan_symbol_ != NULL) {
-    if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) {
-      if (!ConsumeSubString(&current, end, nan_symbol_, allow_case_insensitivity)) {
-        return junk_string_value_;
-      }
-
-      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
-        return junk_string_value_;
-      }
-      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
-        return junk_string_value_;
-      }
-
-      *processed_characters_count = static_cast<int>(current - input);
-      return sign ? -Double::NaN() : Double::NaN();
-    }
-  }
-
-  bool leading_zero = false;
-  if (*current == '0') {
-    if (Advance(&current, separator_, 10, end)) {
-      *processed_characters_count = static_cast<int>(current - input);
-      return SignedZero(sign);
-    }
-
-    leading_zero = true;
-
-    // It could be hexadecimal value.
-    if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) &&
-        (*current == 'x' || *current == 'X')) {
-      ++current;
-
-      if (current == end) return junk_string_value_;  // "0x"
-
-      bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) &&
-                IsHexFloatString(current, end, separator_, allow_trailing_junk);
-
-      if (!parse_as_hex_float && !isDigit(*current, 16)) {
-        return junk_string_value_;
-      }
-
-      bool result_is_junk;
-      double result = RadixStringToIeee<4>(&current,
-                                           end,
-                                           sign,
-                                           separator_,
-                                           parse_as_hex_float,
-                                           allow_trailing_junk,
-                                           junk_string_value_,
-                                           read_as_double,
-                                           &result_is_junk);
-      if (!result_is_junk) {
-        if (allow_trailing_spaces) AdvanceToNonspace(&current, end);
-        *processed_characters_count = static_cast<int>(current - input);
-      }
-      return result;
-    }
-
-    // Ignore leading zeros in the integer part.
-    while (*current == '0') {
-      if (Advance(&current, separator_, 10, end)) {
-        *processed_characters_count = static_cast<int>(current - input);
-        return SignedZero(sign);
-      }
-    }
-  }
-
-  bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
-
-  // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
-  const int kBufferSize = kMaxSignificantDigits + 10;
-  DOUBLE_CONVERSION_STACK_UNINITIALIZED char
-      buffer[kBufferSize];  // NOLINT: size is known at compile time.
-  int buffer_pos = 0;
-
-  // Copy significant digits of the integer part (if any) to the buffer.
-  while (*current >= '0' && *current <= '9') {
-    if (significant_digits < kMaxSignificantDigits) {
-      DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
-      buffer[buffer_pos++] = static_cast<char>(*current);
-      significant_digits++;
-      // Will later check if it's an octal in the buffer.
-    } else {
-      insignificant_digits++;  // Move the digit into the exponential part.
-      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
-    }
-    octal = octal && *current < '8';
-    if (Advance(&current, separator_, 10, end)) goto parsing_done;
-  }
-
-  if (significant_digits == 0) {
-    octal = false;
-  }
-
-  if (*current == '.') {
-    if (octal && !allow_trailing_junk) return junk_string_value_;
-    if (octal) goto parsing_done;
-
-    if (Advance(&current, separator_, 10, end)) {
-      if (significant_digits == 0 && !leading_zero) {
-        return junk_string_value_;
-      } else {
-        goto parsing_done;
-      }
-    }
-
-    if (significant_digits == 0) {
-      // octal = false;
-      // Integer part consists of 0 or is absent. Significant digits start after
-      // leading zeros (if any).
-      while (*current == '0') {
-        if (Advance(&current, separator_, 10, end)) {
-          *processed_characters_count = static_cast<int>(current - input);
-          return SignedZero(sign);
-        }
-        exponent--;  // Move this 0 into the exponent.
-      }
-    }
-
-    // There is a fractional part.
-    // We don't emit a '.', but adjust the exponent instead.
-    while (*current >= '0' && *current <= '9') {
-      if (significant_digits < kMaxSignificantDigits) {
-        DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
-        buffer[buffer_pos++] = static_cast<char>(*current);
-        significant_digits++;
-        exponent--;
-      } else {
-        // Ignore insignificant digits in the fractional part.
-        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
-      }
-      if (Advance(&current, separator_, 10, end)) goto parsing_done;
-    }
-  }
-
-  if (!leading_zero && exponent == 0 && significant_digits == 0) {
-    // If leading_zeros is true then the string contains zeros.
-    // If exponent < 0 then string was [+-]\.0*...
-    // If significant_digits != 0 the string is not equal to 0.
-    // Otherwise there are no digits in the string.
-    return junk_string_value_;
-  }
-
-  // Parse exponential part.
-  if (*current == 'e' || *current == 'E') {
-    if (octal && !allow_trailing_junk) return junk_string_value_;
-    if (octal) goto parsing_done;
-    Iterator junk_begin = current;
-    ++current;
-    if (current == end) {
-      if (allow_trailing_junk) {
-        current = junk_begin;
-        goto parsing_done;
-      } else {
-        return junk_string_value_;
-      }
-    }
-    char exponen_sign = '+';
-    if (*current == '+' || *current == '-') {
-      exponen_sign = static_cast<char>(*current);
-      ++current;
-      if (current == end) {
-        if (allow_trailing_junk) {
-          current = junk_begin;
-          goto parsing_done;
-        } else {
-          return junk_string_value_;
-        }
-      }
-    }
-
-    if (current == end || *current < '0' || *current > '9') {
-      if (allow_trailing_junk) {
-        current = junk_begin;
-        goto parsing_done;
-      } else {
-        return junk_string_value_;
-      }
-    }
-
-    const int max_exponent = INT_MAX / 2;
-    DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
-    int num = 0;
-    do {
-      // Check overflow.
-      int digit = *current - '0';
-      if (num >= max_exponent / 10
-          && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
-        num = max_exponent;
-      } else {
-        num = num * 10 + digit;
-      }
-      ++current;
-    } while (current != end && *current >= '0' && *current <= '9');
-
-    exponent += (exponen_sign == '-' ? -num : num);
-  }
-
-  if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
-    return junk_string_value_;
-  }
-  if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
-    return junk_string_value_;
-  }
-  if (allow_trailing_spaces) {
-    AdvanceToNonspace(&current, end);
-  }
-
-  parsing_done:
-  exponent += insignificant_digits;
-
-  if (octal) {
-    double result;
-    bool result_is_junk;
-    char* start = buffer;
-    result = RadixStringToIeee<3>(&start,
-                                  buffer + buffer_pos,
-                                  sign,
-                                  separator_,
-                                  false, // Don't parse as hex_float.
-                                  allow_trailing_junk,
-                                  junk_string_value_,
-                                  read_as_double,
-                                  &result_is_junk);
-    DOUBLE_CONVERSION_ASSERT(!result_is_junk);
-    *processed_characters_count = static_cast<int>(current - input);
-    return result;
-  }
-
-  if (nonzero_digit_dropped) {
-    buffer[buffer_pos++] = '1';
-    exponent--;
-  }
-
-  DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
-  buffer[buffer_pos] = '\0';
-
-  double converted;
-  if (read_as_double) {
-    converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
-  } else {
-    converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
-  }
-  *processed_characters_count = static_cast<int>(current - input);
-  return sign? -converted: converted;
-}
-
-
-double StringToDoubleConverter::StringToDouble(
-    const char* buffer,
-    int length,
-    int* processed_characters_count) const {
-  return StringToIeee(buffer, length, true, processed_characters_count);
-}
-
-
-double StringToDoubleConverter::StringToDouble(
-    const uc16* buffer,
-    int length,
-    int* processed_characters_count) const {
-  return StringToIeee(buffer, length, true, processed_characters_count);
-}
-
-
-float StringToDoubleConverter::StringToFloat(
-    const char* buffer,
-    int length,
-    int* processed_characters_count) const {
-  return static_cast<float>(StringToIeee(buffer, length, false,
-                                         processed_characters_count));
-}
-
-
-float StringToDoubleConverter::StringToFloat(
-    const uc16* buffer,
-    int length,
-    int* processed_characters_count) const {
-  return static_cast<float>(StringToIeee(buffer, length, false,
-                                         processed_characters_count));
-}
-
-//-----------------------------------------------
-//
-//	[Siv3D]
-//
-double StringToDoubleConverter::Siv3D_StringToIeee(const char32_t* start_pointer,
-    int length,
-    bool read_as_double,
-    int* processed_characters_count) const
-{
-    return StringToIeee(start_pointer, length, read_as_double,
-        processed_characters_count);
-}
-//
-//-----------------------------------------------
-
-}  // namespace double_conversion
diff --git a/Siv3D/src/ThirdParty/double-conversion/string-to-double.h b/Siv3D/src/ThirdParty/double-conversion/string-to-double.h
deleted file mode 100644
index e44d4752f..000000000
--- a/Siv3D/src/ThirdParty/double-conversion/string-to-double.h
+++ /dev/null
@@ -1,237 +0,0 @@
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-//     * Redistributions of source code must retain the above copyright
-//       notice, this list of conditions and the following disclaimer.
-//     * Redistributions in binary form must reproduce the above
-//       copyright notice, this list of conditions and the following
-//       disclaimer in the documentation and/or other materials provided
-//       with the distribution.
-//     * Neither the name of Google Inc. nor the names of its
-//       contributors may be used to endorse or promote products derived
-//       from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef DOUBLE_CONVERSION_STRING_TO_DOUBLE_H_
-#define DOUBLE_CONVERSION_STRING_TO_DOUBLE_H_
-
-#include "utils.h"
-
-namespace double_conversion {
-
-class StringToDoubleConverter {
- public:
-  // Enumeration for allowing octals and ignoring junk when converting
-  // strings to numbers.
-  enum Flags {
-    NO_FLAGS = 0,
-    ALLOW_HEX = 1,
-    ALLOW_OCTALS = 2,
-    ALLOW_TRAILING_JUNK = 4,
-    ALLOW_LEADING_SPACES = 8,
-    ALLOW_TRAILING_SPACES = 16,
-    ALLOW_SPACES_AFTER_SIGN = 32,
-    ALLOW_CASE_INSENSITIVITY = 64,
-    ALLOW_CASE_INSENSIBILITY = 64,  // Deprecated
-    ALLOW_HEX_FLOATS = 128,
-  };
-
-  static const uc16 kNoSeparator = '\0';
-
-  // Flags should be a bit-or combination of the possible Flags-enum.
-  //  - NO_FLAGS: no special flags.
-  //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
-  //      Ex: StringToDouble("0x1234") -> 4660.0
-  //          In StringToDouble("0x1234.56") the characters ".56" are trailing
-  //          junk. The result of the call is hence dependent on
-  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
-  //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
-  //      the string will not be parsed as "0" followed by junk.
-  //
-  //  - ALLOW_OCTALS: recognizes the prefix "0" for octals:
-  //      If a sequence of octal digits starts with '0', then the number is
-  //      read as octal integer. Octal numbers may only be integers.
-  //      Ex: StringToDouble("01234") -> 668.0
-  //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal
-  //                                               // digits.
-  //          In StringToDouble("01234.56") the characters ".56" are trailing
-  //          junk. The result of the call is hence dependent on
-  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
-  //          In StringToDouble("01234e56") the characters "e56" are trailing
-  //          junk, too.
-  //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
-  //      a double literal.
-  //  - ALLOW_LEADING_SPACES: skip over leading whitespace, including spaces,
-  //                          new-lines, and tabs.
-  //  - ALLOW_TRAILING_SPACES: ignore trailing whitespace.
-  //  - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign.
-  //       Ex: StringToDouble("-   123.2") -> -123.2.
-  //           StringToDouble("+   123.2") -> 123.2
-  //  - ALLOW_CASE_INSENSITIVITY: ignore case of characters for special values:
-  //      infinity and nan.
-  //  - ALLOW_HEX_FLOATS: allows hexadecimal float literals.
-  //      This *must* start with "0x" and separate the exponent with "p".
-  //      Examples: 0x1.2p3 == 9.0
-  //                0x10.1p0 == 16.0625
-  //      ALLOW_HEX and ALLOW_HEX_FLOATS are indendent.
-  //
-  // empty_string_value is returned when an empty string is given as input.
-  // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
-  // containing only spaces is converted to the 'empty_string_value', too.
-  //
-  // junk_string_value is returned when
-  //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
-  //     part of a double-literal) is found.
-  //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
-  //     double literal.
-  //
-  // infinity_symbol and nan_symbol are strings that are used to detect
-  // inputs that represent infinity and NaN. They can be null, in which case
-  // they are ignored.
-  // The conversion routine first reads any possible signs. Then it compares the
-  // following character of the input-string with the first character of
-  // the infinity, and nan-symbol. If either matches, the function assumes, that
-  // a match has been found, and expects the following input characters to match
-  // the remaining characters of the special-value symbol.
-  // This means that the following restrictions apply to special-value symbols:
-  //  - they must not start with signs ('+', or '-'),
-  //  - they must not have the same first character.
-  //  - they must not start with digits.
-  //
-  // If the separator character is not kNoSeparator, then that specific
-  // character is ignored when in between two valid digits of the significant.
-  // It is not allowed to appear in the exponent.
-  // It is not allowed to lead or trail the number.
-  // It is not allowed to appear twice next to each other.
-  //
-  // Examples:
-  //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
-  //  empty_string_value = 0.0,
-  //  junk_string_value = NaN,
-  //  infinity_symbol = "infinity",
-  //  nan_symbol = "nan":
-  //    StringToDouble("0x1234") -> 4660.0.
-  //    StringToDouble("0x1234K") -> 4660.0.
-  //    StringToDouble("") -> 0.0  // empty_string_value.
-  //    StringToDouble(" ") -> NaN  // junk_string_value.
-  //    StringToDouble(" 1") -> NaN  // junk_string_value.
-  //    StringToDouble("0x") -> NaN  // junk_string_value.
-  //    StringToDouble("-123.45") -> -123.45.
-  //    StringToDouble("--123.45") -> NaN  // junk_string_value.
-  //    StringToDouble("123e45") -> 123e45.
-  //    StringToDouble("123E45") -> 123e45.
-  //    StringToDouble("123e+45") -> 123e45.
-  //    StringToDouble("123E-45") -> 123e-45.
-  //    StringToDouble("123e") -> 123.0  // trailing junk ignored.
-  //    StringToDouble("123e-") -> 123.0  // trailing junk ignored.
-  //    StringToDouble("+NaN") -> NaN  // NaN string literal.
-  //    StringToDouble("-infinity") -> -inf.  // infinity literal.
-  //    StringToDouble("Infinity") -> NaN  // junk_string_value.
-  //
-  //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
-  //  empty_string_value = 0.0,
-  //  junk_string_value = NaN,
-  //  infinity_symbol = NULL,
-  //  nan_symbol = NULL:
-  //    StringToDouble("0x1234") -> NaN  // junk_string_value.
-  //    StringToDouble("01234") -> 668.0.
-  //    StringToDouble("") -> 0.0  // empty_string_value.
-  //    StringToDouble(" ") -> 0.0  // empty_string_value.
-  //    StringToDouble(" 1") -> 1.0
-  //    StringToDouble("0x") -> NaN  // junk_string_value.
-  //    StringToDouble("0123e45") -> NaN  // junk_string_value.
-  //    StringToDouble("01239E45") -> 1239e45.
-  //    StringToDouble("-infinity") -> NaN  // junk_string_value.
-  //    StringToDouble("NaN") -> NaN  // junk_string_value.
-  //
-  //  flags = NO_FLAGS,
-  //  separator = ' ':
-  //    StringToDouble("1 2 3 4") -> 1234.0
-  //    StringToDouble("1  2") -> NaN // junk_string_value
-  //    StringToDouble("1 000 000.0") -> 1000000.0
-  //    StringToDouble("1.000 000") -> 1.0
-  //    StringToDouble("1.0e1 000") -> NaN // junk_string_value
-  StringToDoubleConverter(int flags,
-                          double empty_string_value,
-                          double junk_string_value,
-                          const char* infinity_symbol,
-                          const char* nan_symbol,
-                          uc16 separator = kNoSeparator)
-      : flags_(flags),
-        empty_string_value_(empty_string_value),
-        junk_string_value_(junk_string_value),
-        infinity_symbol_(infinity_symbol),
-        nan_symbol_(nan_symbol),
-        separator_(separator) {
-  }
-
-  // Performs the conversion.
-  // The output parameter 'processed_characters_count' is set to the number
-  // of characters that have been processed to read the number.
-  // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
-  // in the 'processed_characters_count'. Trailing junk is never included.
-  double StringToDouble(const char* buffer,
-                        int length,
-                        int* processed_characters_count) const;
-
-  // Same as StringToDouble above but for 16 bit characters.
-  double StringToDouble(const uc16* buffer,
-                        int length,
-                        int* processed_characters_count) const;
-
-  // Same as StringToDouble but reads a float.
-  // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
-  // due to potential double-rounding.
-  float StringToFloat(const char* buffer,
-                      int length,
-                      int* processed_characters_count) const;
-
-  // Same as StringToFloat above but for 16 bit characters.
-  float StringToFloat(const uc16* buffer,
-                      int length,
-                      int* processed_characters_count) const;
-
-  //-----------------------------------------------
-  //
-  //	[Siv3D]
-  //
-  double Siv3D_StringToIeee(const char32_t* start_pointer,
-                            int length,
-                            bool read_as_double,
-                            int* processed_characters_count) const;
-  //
-  //-----------------------------------------------
-
- private:
-  const int flags_;
-  const double empty_string_value_;
-  const double junk_string_value_;
-  const char* const infinity_symbol_;
-  const char* const nan_symbol_;
-  const uc16 separator_;
-
-  template <class Iterator>
-  double StringToIeee(Iterator start_pointer,
-                      int length,
-                      bool read_as_double,
-                      int* processed_characters_count) const;
-
-  DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
-};
-
-}  // namespace double_conversion
-
-#endif  // DOUBLE_CONVERSION_STRING_TO_DOUBLE_H_
diff --git a/Siv3D/src/ThirdParty/double-conversion/strtod.cc b/Siv3D/src/ThirdParty/double-conversion/strtod.cc
deleted file mode 100644
index 3da7a42a7..000000000
--- a/Siv3D/src/ThirdParty/double-conversion/strtod.cc
+++ /dev/null
@@ -1,606 +0,0 @@
-// Copyright 2010 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-//     * Redistributions of source code must retain the above copyright
-//       notice, this list of conditions and the following disclaimer.
-//     * Redistributions in binary form must reproduce the above
-//       copyright notice, this list of conditions and the following
-//       disclaimer in the documentation and/or other materials provided
-//       with the distribution.
-//     * Neither the name of Google Inc. nor the names of its
-//       contributors may be used to endorse or promote products derived
-//       from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include <climits>
-#include <cstdarg>
-
-#include "bignum.h"
-#include "cached-powers.h"
-#include "ieee.h"
-#include "strtod.h"
-
-namespace double_conversion {
-
-#if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
-// 2^53 = 9007199254740992.
-// Any integer with at most 15 decimal digits will hence fit into a double
-// (which has a 53bit significand) without loss of precision.
-static const int kMaxExactDoubleIntegerDecimalDigits = 15;
-#endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
-// 2^64 = 18446744073709551616 > 10^19
-static const int kMaxUint64DecimalDigits = 19;
-
-// Max double: 1.7976931348623157 x 10^308
-// Min non-zero double: 4.9406564584124654 x 10^-324
-// Any x >= 10^309 is interpreted as +infinity.
-// Any x <= 10^-324 is interpreted as 0.
-// Note that 2.5e-324 (despite being smaller than the min double) will be read
-// as non-zero (equal to the min non-zero double).
-static const int kMaxDecimalPower = 309;
-static const int kMinDecimalPower = -324;
-
-// 2^64 = 18446744073709551616
-static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
-
-
-#if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
-static const double exact_powers_of_ten[] = {
-  1.0,  // 10^0
-  10.0,
-  100.0,
-  1000.0,
-  10000.0,
-  100000.0,
-  1000000.0,
-  10000000.0,
-  100000000.0,
-  1000000000.0,
-  10000000000.0,  // 10^10
-  100000000000.0,
-  1000000000000.0,
-  10000000000000.0,
-  100000000000000.0,
-  1000000000000000.0,
-  10000000000000000.0,
-  100000000000000000.0,
-  1000000000000000000.0,
-  10000000000000000000.0,
-  100000000000000000000.0,  // 10^20
-  1000000000000000000000.0,
-  // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
-  10000000000000000000000.0
-};
-static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten);
-#endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
-
-// Maximum number of significant digits in the decimal representation.
-// In fact the value is 772 (see conversions.cc), but to give us some margin
-// we round up to 780.
-static const int kMaxSignificantDecimalDigits = 780;
-
-static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
-  for (int i = 0; i < buffer.length(); i++) {
-    if (buffer[i] != '0') {
-      return buffer.SubVector(i, buffer.length());
-    }
-  }
-  return Vector<const char>(buffer.start(), 0);
-}
-
-
-static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
-  for (int i = buffer.length() - 1; i >= 0; --i) {
-    if (buffer[i] != '0') {
-      return buffer.SubVector(0, i + 1);
-    }
-  }
-  return Vector<const char>(buffer.start(), 0);
-}
-
-
-static void CutToMaxSignificantDigits(Vector<const char> buffer,
-                                       int exponent,
-                                       char* significant_buffer,
-                                       int* significant_exponent) {
-  for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
-    significant_buffer[i] = buffer[i];
-  }
-  // The input buffer has been trimmed. Therefore the last digit must be
-  // different from '0'.
-  DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0');
-  // Set the last digit to be non-zero. This is sufficient to guarantee
-  // correct rounding.
-  significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
-  *significant_exponent =
-      exponent + (buffer.length() - kMaxSignificantDecimalDigits);
-}
-
-
-// Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
-// If possible the input-buffer is reused, but if the buffer needs to be
-// modified (due to cutting), then the input needs to be copied into the
-// buffer_copy_space.
-static void TrimAndCut(Vector<const char> buffer, int exponent,
-                       char* buffer_copy_space, int space_size,
-                       Vector<const char>* trimmed, int* updated_exponent) {
-  Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
-  Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
-  exponent += left_trimmed.length() - right_trimmed.length();
-  if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
-    (void) space_size;  // Mark variable as used.
-    DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits);
-    CutToMaxSignificantDigits(right_trimmed, exponent,
-                              buffer_copy_space, updated_exponent);
-    *trimmed = Vector<const char>(buffer_copy_space,
-                                 kMaxSignificantDecimalDigits);
-  } else {
-    *trimmed = right_trimmed;
-    *updated_exponent = exponent;
-  }
-}
-
-
-// Reads digits from the buffer and converts them to a uint64.
-// Reads in as many digits as fit into a uint64.
-// When the string starts with "1844674407370955161" no further digit is read.
-// Since 2^64 = 18446744073709551616 it would still be possible read another
-// digit if it was less or equal than 6, but this would complicate the code.
-static uint64_t ReadUint64(Vector<const char> buffer,
-                           int* number_of_read_digits) {
-  uint64_t result = 0;
-  int i = 0;
-  while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
-    int digit = buffer[i++] - '0';
-    DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
-    result = 10 * result + digit;
-  }
-  *number_of_read_digits = i;
-  return result;
-}
-
-
-// Reads a DiyFp from the buffer.
-// The returned DiyFp is not necessarily normalized.
-// If remaining_decimals is zero then the returned DiyFp is accurate.
-// Otherwise it has been rounded and has error of at most 1/2 ulp.
-static void ReadDiyFp(Vector<const char> buffer,
-                      DiyFp* result,
-                      int* remaining_decimals) {
-  int read_digits;
-  uint64_t significand = ReadUint64(buffer, &read_digits);
-  if (buffer.length() == read_digits) {
-    *result = DiyFp(significand, 0);
-    *remaining_decimals = 0;
-  } else {
-    // Round the significand.
-    if (buffer[read_digits] >= '5') {
-      significand++;
-    }
-    // Compute the binary exponent.
-    int exponent = 0;
-    *result = DiyFp(significand, exponent);
-    *remaining_decimals = buffer.length() - read_digits;
-  }
-}
-
-
-static bool DoubleStrtod(Vector<const char> trimmed,
-                         int exponent,
-                         double* result) {
-#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
-  // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
-  // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
-  // result is not accurate.
-  // We know that Windows32 uses 64 bits and is therefore accurate.
-  // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
-  // the same problem.
-  return false;
-#else
-  if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
-    int read_digits;
-    // The trimmed input fits into a double.
-    // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
-    // can compute the result-double simply by multiplying (resp. dividing) the
-    // two numbers.
-    // This is possible because IEEE guarantees that floating-point operations
-    // return the best possible approximation.
-    if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
-      // 10^-exponent fits into a double.
-      *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
-      DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
-      *result /= exact_powers_of_ten[-exponent];
-      return true;
-    }
-    if (0 <= exponent && exponent < kExactPowersOfTenSize) {
-      // 10^exponent fits into a double.
-      *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
-      DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
-      *result *= exact_powers_of_ten[exponent];
-      return true;
-    }
-    int remaining_digits =
-        kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
-    if ((0 <= exponent) &&
-        (exponent - remaining_digits < kExactPowersOfTenSize)) {
-      // The trimmed string was short and we can multiply it with
-      // 10^remaining_digits. As a result the remaining exponent now fits
-      // into a double too.
-      *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
-      DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
-      *result *= exact_powers_of_ten[remaining_digits];
-      *result *= exact_powers_of_ten[exponent - remaining_digits];
-      return true;
-    }
-  }
-  return false;
-#endif
-}
-
-
-// Returns 10^exponent as an exact DiyFp.
-// The given exponent must be in the range [1; kDecimalExponentDistance[.
-static DiyFp AdjustmentPowerOfTen(int exponent) {
-  DOUBLE_CONVERSION_ASSERT(0 < exponent);
-  DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
-  // Simply hardcode the remaining powers for the given decimal exponent
-  // distance.
-  DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
-  switch (exponent) {
-    case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60);
-    case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57);
-    case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54);
-    case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50);
-    case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47);
-    case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44);
-    case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40);
-    default:
-      DOUBLE_CONVERSION_UNREACHABLE();
-  }
-}
-
-
-// If the function returns true then the result is the correct double.
-// Otherwise it is either the correct double or the double that is just below
-// the correct double.
-static bool DiyFpStrtod(Vector<const char> buffer,
-                        int exponent,
-                        double* result) {
-  DiyFp input;
-  int remaining_decimals;
-  ReadDiyFp(buffer, &input, &remaining_decimals);
-  // Since we may have dropped some digits the input is not accurate.
-  // If remaining_decimals is different than 0 than the error is at most
-  // .5 ulp (unit in the last place).
-  // We don't want to deal with fractions and therefore keep a common
-  // denominator.
-  const int kDenominatorLog = 3;
-  const int kDenominator = 1 << kDenominatorLog;
-  // Move the remaining decimals into the exponent.
-  exponent += remaining_decimals;
-  uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
-
-  int old_e = input.e();
-  input.Normalize();
-  error <<= old_e - input.e();
-
-  DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
-  if (exponent < PowersOfTenCache::kMinDecimalExponent) {
-    *result = 0.0;
-    return true;
-  }
-  DiyFp cached_power;
-  int cached_decimal_exponent;
-  PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
-                                                     &cached_power,
-                                                     &cached_decimal_exponent);
-
-  if (cached_decimal_exponent != exponent) {
-    int adjustment_exponent = exponent - cached_decimal_exponent;
-    DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
-    input.Multiply(adjustment_power);
-    if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
-      // The product of input with the adjustment power fits into a 64 bit
-      // integer.
-      DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
-    } else {
-      // The adjustment power is exact. There is hence only an error of 0.5.
-      error += kDenominator / 2;
-    }
-  }
-
-  input.Multiply(cached_power);
-  // The error introduced by a multiplication of a*b equals
-  //   error_a + error_b + error_a*error_b/2^64 + 0.5
-  // Substituting a with 'input' and b with 'cached_power' we have
-  //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
-  //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
-  int error_b = kDenominator / 2;
-  int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
-  int fixed_error = kDenominator / 2;
-  error += error_b + error_ab + fixed_error;
-
-  old_e = input.e();
-  input.Normalize();
-  error <<= old_e - input.e();
-
-  // See if the double's significand changes if we add/subtract the error.
-  int order_of_magnitude = DiyFp::kSignificandSize + input.e();
-  int effective_significand_size =
-      Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
-  int precision_digits_count =
-      DiyFp::kSignificandSize - effective_significand_size;
-  if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
-    // This can only happen for very small denormals. In this case the
-    // half-way multiplied by the denominator exceeds the range of an uint64.
-    // Simply shift everything to the right.
-    int shift_amount = (precision_digits_count + kDenominatorLog) -
-        DiyFp::kSignificandSize + 1;
-    input.set_f(input.f() >> shift_amount);
-    input.set_e(input.e() + shift_amount);
-    // We add 1 for the lost precision of error, and kDenominator for
-    // the lost precision of input.f().
-    error = (error >> shift_amount) + 1 + kDenominator;
-    precision_digits_count -= shift_amount;
-  }
-  // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
-  DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
-  DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64);
-  uint64_t one64 = 1;
-  uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
-  uint64_t precision_bits = input.f() & precision_bits_mask;
-  uint64_t half_way = one64 << (precision_digits_count - 1);
-  precision_bits *= kDenominator;
-  half_way *= kDenominator;
-  DiyFp rounded_input(input.f() >> precision_digits_count,
-                      input.e() + precision_digits_count);
-  if (precision_bits >= half_way + error) {
-    rounded_input.set_f(rounded_input.f() + 1);
-  }
-  // If the last_bits are too close to the half-way case than we are too
-  // inaccurate and round down. In this case we return false so that we can
-  // fall back to a more precise algorithm.
-
-  *result = Double(rounded_input).value();
-  if (half_way - error < precision_bits && precision_bits < half_way + error) {
-    // Too imprecise. The caller will have to fall back to a slower version.
-    // However the returned number is guaranteed to be either the correct
-    // double, or the next-lower double.
-    return false;
-  } else {
-    return true;
-  }
-}
-
-
-// Returns
-//   - -1 if buffer*10^exponent < diy_fp.
-//   -  0 if buffer*10^exponent == diy_fp.
-//   - +1 if buffer*10^exponent > diy_fp.
-// Preconditions:
-//   buffer.length() + exponent <= kMaxDecimalPower + 1
-//   buffer.length() + exponent > kMinDecimalPower
-//   buffer.length() <= kMaxDecimalSignificantDigits
-static int CompareBufferWithDiyFp(Vector<const char> buffer,
-                                  int exponent,
-                                  DiyFp diy_fp) {
-  DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
-  DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower);
-  DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
-  // Make sure that the Bignum will be able to hold all our numbers.
-  // Our Bignum implementation has a separate field for exponents. Shifts will
-  // consume at most one bigit (< 64 bits).
-  // ln(10) == 3.3219...
-  DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
-  Bignum buffer_bignum;
-  Bignum diy_fp_bignum;
-  buffer_bignum.AssignDecimalString(buffer);
-  diy_fp_bignum.AssignUInt64(diy_fp.f());
-  if (exponent >= 0) {
-    buffer_bignum.MultiplyByPowerOfTen(exponent);
-  } else {
-    diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
-  }
-  if (diy_fp.e() > 0) {
-    diy_fp_bignum.ShiftLeft(diy_fp.e());
-  } else {
-    buffer_bignum.ShiftLeft(-diy_fp.e());
-  }
-  return Bignum::Compare(buffer_bignum, diy_fp_bignum);
-}
-
-
-// Returns true if the guess is the correct double.
-// Returns false, when guess is either correct or the next-lower double.
-static bool ComputeGuess(Vector<const char> trimmed, int exponent,
-                         double* guess) {
-  if (trimmed.length() == 0) {
-    *guess = 0.0;
-    return true;
-  }
-  if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
-    *guess = Double::Infinity();
-    return true;
-  }
-  if (exponent + trimmed.length() <= kMinDecimalPower) {
-    *guess = 0.0;
-    return true;
-  }
-
-  if (DoubleStrtod(trimmed, exponent, guess) ||
-      DiyFpStrtod(trimmed, exponent, guess)) {
-    return true;
-  }
-  if (*guess == Double::Infinity()) {
-    return true;
-  }
-  return false;
-}
-
-static bool IsDigit(const char d) {
-  return ('0' <= d) && (d <= '9');
-}
-
-static bool IsNonZeroDigit(const char d) {
-  return ('1' <= d) && (d <= '9');
-}
-
-static bool AssertTrimmedDigits(const Vector<const char>& buffer) {
-  for(int i = 0; i < buffer.length(); ++i) {
-    if(!IsDigit(buffer[i])) {
-      return false;
-    }
-  }
-  return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1]));
-}
-
-double StrtodTrimmed(Vector<const char> trimmed, int exponent) {
-  DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);
-  DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));
-  double guess;
-  const bool is_correct = ComputeGuess(trimmed, exponent, &guess);
-  if (is_correct) {
-    return guess;
-  }
-  DiyFp upper_boundary = Double(guess).UpperBoundary();
-  int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
-  if (comparison < 0) {
-    return guess;
-  } else if (comparison > 0) {
-    return Double(guess).NextDouble();
-  } else if ((Double(guess).Significand() & 1) == 0) {
-    // Round towards even.
-    return guess;
-  } else {
-    return Double(guess).NextDouble();
-  }
-}
-
-double Strtod(Vector<const char> buffer, int exponent) {
-  char copy_buffer[kMaxSignificantDecimalDigits];
-  Vector<const char> trimmed;
-  int updated_exponent;
-  TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
-             &trimmed, &updated_exponent);
-  return StrtodTrimmed(trimmed, updated_exponent);
-}
-
-static float SanitizedDoubletof(double d) {
-  DOUBLE_CONVERSION_ASSERT(d >= 0.0);
-  // ASAN has a sanitize check that disallows casting doubles to floats if
-  // they are too big.
-  // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
-  // The behavior should be covered by IEEE 754, but some projects use this
-  // flag, so work around it.
-  float max_finite = 3.4028234663852885981170418348451692544e+38;
-  // The half-way point between the max-finite and infinity value.
-  // Since infinity has an even significand everything equal or greater than
-  // this value should become infinity.
-  double half_max_finite_infinity =
-      3.40282356779733661637539395458142568448e+38;
-  if (d >= max_finite) {
-    if (d >= half_max_finite_infinity) {
-      return Single::Infinity();
-    } else {
-      return max_finite;
-    }
-  } else {
-    return static_cast<float>(d);
-  }
-}
-
-float Strtof(Vector<const char> buffer, int exponent) {
-  char copy_buffer[kMaxSignificantDecimalDigits];
-  Vector<const char> trimmed;
-  int updated_exponent;
-  TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
-             &trimmed, &updated_exponent);
-  exponent = updated_exponent;
-
-  double double_guess;
-  bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
-
-  float float_guess = SanitizedDoubletof(double_guess);
-  if (float_guess == double_guess) {
-    // This shortcut triggers for integer values.
-    return float_guess;
-  }
-
-  // We must catch double-rounding. Say the double has been rounded up, and is
-  // now a boundary of a float, and rounds up again. This is why we have to
-  // look at previous too.
-  // Example (in decimal numbers):
-  //    input: 12349
-  //    high-precision (4 digits): 1235
-  //    low-precision (3 digits):
-  //       when read from input: 123
-  //       when rounded from high precision: 124.
-  // To do this we simply look at the neigbors of the correct result and see
-  // if they would round to the same float. If the guess is not correct we have
-  // to look at four values (since two different doubles could be the correct
-  // double).
-
-  double double_next = Double(double_guess).NextDouble();
-  double double_previous = Double(double_guess).PreviousDouble();
-
-  float f1 = SanitizedDoubletof(double_previous);
-  float f2 = float_guess;
-  float f3 = SanitizedDoubletof(double_next);
-  float f4;
-  if (is_correct) {
-    f4 = f3;
-  } else {
-    double double_next2 = Double(double_next).NextDouble();
-    f4 = SanitizedDoubletof(double_next2);
-  }
-  (void) f2;  // Mark variable as used.
-  DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
-
-  // If the guess doesn't lie near a single-precision boundary we can simply
-  // return its float-value.
-  if (f1 == f4) {
-    return float_guess;
-  }
-
-  DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
-         (f1 == f2 && f2 != f3 && f3 == f4) ||
-         (f1 == f2 && f2 == f3 && f3 != f4));
-
-  // guess and next are the two possible candidates (in the same way that
-  // double_guess was the lower candidate for a double-precision guess).
-  float guess = f1;
-  float next = f4;
-  DiyFp upper_boundary;
-  if (guess == 0.0f) {
-    float min_float = 1e-45f;
-    upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
-  } else {
-    upper_boundary = Single(guess).UpperBoundary();
-  }
-  int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
-  if (comparison < 0) {
-    return guess;
-  } else if (comparison > 0) {
-    return next;
-  } else if ((Single(guess).Significand() & 1) == 0) {
-    // Round towards even.
-    return guess;
-  } else {
-    return next;
-  }
-}
-
-}  // namespace double_conversion
diff --git a/Siv3D/src/ThirdParty/double-conversion/strtod.h b/Siv3D/src/ThirdParty/double-conversion/strtod.h
deleted file mode 100644
index ff0ee4709..000000000
--- a/Siv3D/src/ThirdParty/double-conversion/strtod.h
+++ /dev/null
@@ -1,50 +0,0 @@
-// Copyright 2010 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-//     * Redistributions of source code must retain the above copyright
-//       notice, this list of conditions and the following disclaimer.
-//     * Redistributions in binary form must reproduce the above
-//       copyright notice, this list of conditions and the following
-//       disclaimer in the documentation and/or other materials provided
-//       with the distribution.
-//     * Neither the name of Google Inc. nor the names of its
-//       contributors may be used to endorse or promote products derived
-//       from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef DOUBLE_CONVERSION_STRTOD_H_
-#define DOUBLE_CONVERSION_STRTOD_H_
-
-#include "utils.h"
-
-namespace double_conversion {
-
-// The buffer must only contain digits in the range [0-9]. It must not
-// contain a dot or a sign. It must not start with '0', and must not be empty.
-double Strtod(Vector<const char> buffer, int exponent);
-
-// The buffer must only contain digits in the range [0-9]. It must not
-// contain a dot or a sign. It must not start with '0', and must not be empty.
-float Strtof(Vector<const char> buffer, int exponent);
-
-// For special use cases, the heart of the Strtod() function is also available
-// separately, it assumes that 'trimmed' is as produced by TrimAndCut(), i.e.
-// no leading or trailing zeros, also no lone zero, and not 'too many' digits.
-double StrtodTrimmed(Vector<const char> trimmed, int exponent);
-
-}  // namespace double_conversion
-
-#endif  // DOUBLE_CONVERSION_STRTOD_H_
diff --git a/Siv3D/src/ThirdParty/double-conversion/utils.h b/Siv3D/src/ThirdParty/double-conversion/utils.h
index e011735f7..4f4dd71bf 100644
--- a/Siv3D/src/ThirdParty/double-conversion/utils.h
+++ b/Siv3D/src/ThirdParty/double-conversion/utils.h
@@ -28,17 +28,35 @@
 #ifndef DOUBLE_CONVERSION_UTILS_H_
 #define DOUBLE_CONVERSION_UTILS_H_
 
+// Use DOUBLE_CONVERSION_NON_PREFIXED_MACROS to get unprefixed macros as was
+// the case in double-conversion releases prior to 3.1.6
+
 #include <cstdlib>
 #include <cstring>
 
+// For pre-C++11 compatibility
+#if __cplusplus >= 201103L
+#define DOUBLE_CONVERSION_NULLPTR nullptr
+#else
+#define DOUBLE_CONVERSION_NULLPTR NULL
+#endif
+
 #include <cassert>
 #ifndef DOUBLE_CONVERSION_ASSERT
 #define DOUBLE_CONVERSION_ASSERT(condition)         \
-    assert(condition);
+    assert(condition)
+#endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(ASSERT)
+#define ASSERT DOUBLE_CONVERSION_ASSERT
 #endif
+
 #ifndef DOUBLE_CONVERSION_UNIMPLEMENTED
 #define DOUBLE_CONVERSION_UNIMPLEMENTED() (abort())
 #endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNIMPLEMENTED)
+#define UNIMPLEMENTED DOUBLE_CONVERSION_UNIMPLEMENTED
+#endif
+
 #ifndef DOUBLE_CONVERSION_NO_RETURN
 #ifdef _MSC_VER
 #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn)
@@ -46,6 +64,10 @@
 #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn))
 #endif
 #endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(NO_RETURN)
+#define NO_RETURN DOUBLE_CONVERSION_NO_RETURN
+#endif
+
 #ifndef DOUBLE_CONVERSION_UNREACHABLE
 #ifdef _MSC_VER
 void DOUBLE_CONVERSION_NO_RETURN abort_noreturn();
@@ -55,22 +77,37 @@ inline void abort_noreturn() { abort(); }
 #define DOUBLE_CONVERSION_UNREACHABLE()   (abort())
 #endif
 #endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNREACHABLE)
+#define UNREACHABLE DOUBLE_CONVERSION_UNREACHABLE
+#endif
+
+// Not all compilers support __has_attribute and combining a check for both
+// ifdef and __has_attribute on the same preprocessor line isn't portable.
+#ifdef __has_attribute
+#   define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) __has_attribute(x)
+#else
+#   define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) 0
+#endif
 
 #ifndef DOUBLE_CONVERSION_UNUSED
-#ifdef __GNUC__
+#if DOUBLE_CONVERSION_HAS_ATTRIBUTE(unused)
 #define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
 #else
 #define DOUBLE_CONVERSION_UNUSED
 #endif
 #endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNUSED)
+#define UNUSED DOUBLE_CONVERSION_UNUSED
+#endif
 
-#if defined(__clang__)
-# if __has_attribute(uninitialized)
+#if DOUBLE_CONVERSION_HAS_ATTRIBUTE(uninitialized)
 #define DOUBLE_CONVERSION_STACK_UNINITIALIZED __attribute__((uninitialized))
-# endif
 #else
 #define DOUBLE_CONVERSION_STACK_UNINITIALIZED
 #endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(STACK_UNINITIALIZED)
+#define STACK_UNINITIALIZED DOUBLE_CONVERSION_STACK_UNINITIALIZED
+#endif
 
 // Double operations detection based on target architecture.
 // Linux uses a 80bit wide floating point stack on x86. This induces double
@@ -102,7 +139,8 @@ int main(int argc, char** argv) {
     defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
     defined(__hppa__) || defined(__ia64__) || \
     defined(__mips__) || \
-    defined(__nios2__) || \
+    defined(__loongarch__) || \
+    defined(__nios2__) || defined(__ghs) || \
     defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
     defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
     defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
@@ -110,7 +148,7 @@ int main(int argc, char** argv) {
     defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\
     defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
     defined(__riscv) || defined(__e2k__) || \
-    defined(__or1k__) || defined(__arc__) || \
+    defined(__or1k__) || defined(__arc__) || defined(__ARC64__) || \
     defined(__microblaze__) || defined(__XTENSA__) || \
     defined(__EMSCRIPTEN__) || defined(__wasm32__)
 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
@@ -127,6 +165,9 @@ int main(int argc, char** argv) {
 #else
 #error Target architecture was not detected as supported by Double-Conversion.
 #endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(CORRECT_DOUBLE_OPERATIONS)
+#define CORRECT_DOUBLE_OPERATIONS DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
+#endif
 
 #if defined(_WIN32) && !defined(__MINGW32__)
 
@@ -152,7 +193,9 @@ typedef uint16_t uc16;
 // Usage: instead of writing 0x1234567890123456
 //      write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456);
 #define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
-
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UINT64_2PART_C)
+#define UINT64_2PART_C DOUBLE_CONVERSION_UINT64_2PART_C
+#endif
 
 // The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type
 // size_t which represents the number of elements of the given
@@ -163,6 +206,9 @@ typedef uint16_t uc16;
   ((sizeof(a) / sizeof(*(a))) /                         \
   static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
 #endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(ARRAY_SIZE)
+#define ARRAY_SIZE DOUBLE_CONVERSION_ARRAY_SIZE
+#endif
 
 // A macro to disallow the evil copy constructor and operator= functions
 // This should be used in the private: declarations for a class
@@ -171,6 +217,9 @@ typedef uint16_t uc16;
   TypeName(const TypeName&);                    \
   void operator=(const TypeName&)
 #endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(DC_DISALLOW_COPY_AND_ASSIGN)
+#define DC_DISALLOW_COPY_AND_ASSIGN DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN
+#endif
 
 // A macro to disallow all the implicit constructors, namely the
 // default constructor, copy constructor and operator= functions.
@@ -183,6 +232,9 @@ typedef uint16_t uc16;
   TypeName();                                    \
   DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)
 #endif
+#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(DC_DISALLOW_IMPLICIT_CONSTRUCTORS)
+#define DC_DISALLOW_IMPLICIT_CONSTRUCTORS DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS
+#endif
 
 namespace double_conversion {
 
@@ -196,9 +248,9 @@ inline int StrLength(const char* string) {
 template <typename T>
 class Vector {
  public:
-  Vector() : start_(NULL), length_(0) {}
+  Vector() : start_(DOUBLE_CONVERSION_NULLPTR), length_(0) {}
   Vector(T* data, int len) : start_(data), length_(len) {
-    DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != NULL));
+    DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != DOUBLE_CONVERSION_NULLPTR));
   }
 
   // Returns a vector using the same backing storage as this one,
@@ -281,7 +333,7 @@ class StringBuilder {
   void AddSubstring(const char* s, int n) {
     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length());
     DOUBLE_CONVERSION_ASSERT(static_cast<size_t>(n) <= strlen(s));
-    memmove(&buffer_[position_], s, n);
+    memmove(&buffer_[position_], s, static_cast<size_t>(n));
     position_ += n;
   }
 
diff --git a/Siv3D/src/ThirdParty/fast_float/fast_float.h b/Siv3D/src/ThirdParty/fast_float/fast_float.h
new file mode 100644
index 000000000..c41836c75
--- /dev/null
+++ b/Siv3D/src/ThirdParty/fast_float/fast_float.h
@@ -0,0 +1,3661 @@
+// fast_float by Daniel Lemire
+// fast_float by JoĂŁo Paulo Magalhaes
+//
+//
+// with contributions from Eugene Golushkov
+// with contributions from Maksim Kita
+// with contributions from Marcin Wojdyr
+// with contributions from Neal Richardson
+// with contributions from Tim Paine
+// with contributions from Fabio Pellacini
+// with contributions from Lénárd Szolnoki
+// with contributions from Jan Pharago
+// with contributions from Maya Warrier
+//
+//
+// Licensed under the Apache License, Version 2.0, or the
+// MIT License or the Boost License. This file may not be copied,
+// modified, or distributed except according to those terms.
+//
+// MIT License Notice
+//
+//    MIT License
+//    
+//    Copyright (c) 2021 The fast_float authors
+//    
+//    Permission is hereby granted, free of charge, to any
+//    person obtaining a copy of this software and associated
+//    documentation files (the "Software"), to deal in the
+//    Software without restriction, including without
+//    limitation the rights to use, copy, modify, merge,
+//    publish, distribute, sublicense, and/or sell copies of
+//    the Software, and to permit persons to whom the Software
+//    is furnished to do so, subject to the following
+//    conditions:
+//    
+//    The above copyright notice and this permission notice
+//    shall be included in all copies or substantial portions
+//    of the Software.
+//    
+//    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+//    ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+//    TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+//    PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+//    SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+//    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+//    OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+//    IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+//    DEALINGS IN THE SOFTWARE.
+//
+// Apache License (Version 2.0) Notice
+//
+//    Copyright 2021 The fast_float authors
+//    Licensed under the Apache License, Version 2.0 (the "License");
+//    you may not use this file except in compliance with the License.
+//    You may obtain a copy of the License at
+//    
+//    http://www.apache.org/licenses/LICENSE-2.0
+//    
+//    Unless required by applicable law or agreed to in writing, software
+//    distributed under the License is distributed on an "AS IS" BASIS,
+//    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+//    See the License for the specific language governing permissions and
+//
+// BOOST License Notice
+//
+//    Boost Software License - Version 1.0 - August 17th, 2003
+//    
+//    Permission is hereby granted, free of charge, to any person or organization
+//    obtaining a copy of the software and accompanying documentation covered by
+//    this license (the "Software") to use, reproduce, display, distribute,
+//    execute, and transmit the Software, and to prepare derivative works of the
+//    Software, and to permit third-parties to whom the Software is furnished to
+//    do so, all subject to the following:
+//    
+//    The copyright notices in the Software and this entire statement, including
+//    the above license grant, this restriction and the following disclaimer,
+//    must be included in all copies of the Software, in whole or in part, and
+//    all derivative works of the Software, unless such copies or derivative
+//    works are solely in the form of machine-executable object code generated by
+//    a source language processor.
+//    
+//    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+//    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+//    FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
+//    SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
+//    FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
+//    ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+//    DEALINGS IN THE SOFTWARE.
+//
+
+#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
+#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
+
+#ifdef __has_include
+#if __has_include(<version>)
+#include <version>
+#endif
+#endif
+
+// Testing for https://wg21.link/N3652, adopted in C++14
+#if __cpp_constexpr >= 201304
+#define FASTFLOAT_CONSTEXPR14 constexpr
+#else
+#define FASTFLOAT_CONSTEXPR14
+#endif
+
+#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L
+#define FASTFLOAT_HAS_BIT_CAST 1
+#else
+#define FASTFLOAT_HAS_BIT_CAST 0
+#endif
+
+#if defined(__cpp_lib_is_constant_evaluated) && __cpp_lib_is_constant_evaluated >= 201811L
+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
+#else
+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
+#endif
+
+// Testing for relevant C++20 constexpr library features
+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED \
+    && FASTFLOAT_HAS_BIT_CAST \
+    && __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
+#define FASTFLOAT_CONSTEXPR20 constexpr
+#define FASTFLOAT_IS_CONSTEXPR 1
+#else
+#define FASTFLOAT_CONSTEXPR20
+#define FASTFLOAT_IS_CONSTEXPR 0
+#endif
+
+#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
+
+#ifndef FASTFLOAT_FLOAT_COMMON_H
+#define FASTFLOAT_FLOAT_COMMON_H
+
+#include <cfloat>
+#include <cstdint>
+#include <cassert>
+#include <cstring>
+#include <type_traits>
+#include <system_error>
+
+
+namespace fast_float {
+
+#define FASTFLOAT_JSONFMT (1 << 5)
+#define FASTFLOAT_FORTRANFMT (1 << 6)
+
+enum chars_format {
+  scientific = 1 << 0,
+  fixed = 1 << 2,
+  hex = 1 << 3,
+  no_infnan = 1 << 4,
+  // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6
+  json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan,
+  // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed.
+  json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific,
+  fortran = FASTFLOAT_FORTRANFMT | fixed | scientific,
+  general = fixed | scientific
+};
+
+template <typename UC>
+struct from_chars_result_t {
+  UC const* ptr;
+  std::errc ec;
+};
+using from_chars_result = from_chars_result_t<char>;
+
+template <typename UC>
+struct parse_options_t {
+  constexpr explicit parse_options_t(chars_format fmt = chars_format::general,
+    UC dot = UC('.'))
+    : format(fmt), decimal_point(dot) {}
+
+  /** Which number formats are accepted */
+  chars_format format;
+  /** The character used as decimal point */
+  UC decimal_point;
+};
+using parse_options = parse_options_t<char>;
+
+}
+
+#if FASTFLOAT_HAS_BIT_CAST
+#include <bit>
+#endif
+
+#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)   \
+       || defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \
+       || defined(__MINGW64__)                                          \
+       || defined(__s390x__)                                            \
+       || (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) \
+       || defined(__loongarch64) )
+#define FASTFLOAT_64BIT 1
+#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86)   \
+     || defined(__arm__) || defined(_M_ARM) || defined(__ppc__)   \
+     || defined(__MINGW32__) || defined(__EMSCRIPTEN__))
+#define FASTFLOAT_32BIT 1
+#else
+  // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
+  // We can never tell the register width, but the SIZE_MAX is a good approximation.
+  // UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability.
+  #if SIZE_MAX == 0xffff
+    #error Unknown platform (16-bit, unsupported)
+  #elif SIZE_MAX == 0xffffffff
+    #define FASTFLOAT_32BIT 1
+  #elif SIZE_MAX == 0xffffffffffffffff
+    #define FASTFLOAT_64BIT 1
+  #else
+    #error Unknown platform (not 32-bit, not 64-bit?)
+  #endif
+#endif
+
+#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__))
+#include <intrin.h>
+#endif
+
+#if defined(_MSC_VER) && !defined(__clang__)
+#define FASTFLOAT_VISUAL_STUDIO 1
+#endif
+
+#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__
+#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+#elif defined _WIN32
+#define FASTFLOAT_IS_BIG_ENDIAN 0
+#else
+#if defined(__APPLE__) || defined(__FreeBSD__)
+#include <machine/endian.h>
+#elif defined(sun) || defined(__sun)
+#include <sys/byteorder.h>
+#elif defined(__MVS__)
+#include <sys/endian.h>
+#else
+#ifdef __has_include
+#if __has_include(<endian.h>)
+#include <endian.h>
+#endif //__has_include(<endian.h>)
+#endif //__has_include
+#endif
+#
+#ifndef __BYTE_ORDER__
+// safe choice
+#define FASTFLOAT_IS_BIG_ENDIAN 0
+#endif
+#
+#ifndef __ORDER_LITTLE_ENDIAN__
+// safe choice
+#define FASTFLOAT_IS_BIG_ENDIAN 0
+#endif
+#
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+#define FASTFLOAT_IS_BIG_ENDIAN 0
+#else
+#define FASTFLOAT_IS_BIG_ENDIAN 1
+#endif
+#endif
+
+#if defined(__SSE2__) || \
+  (defined(FASTFLOAT_VISUAL_STUDIO) && \
+    (defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && _M_IX86_FP == 2)))
+#define FASTFLOAT_SSE2 1
+#endif
+
+#if defined(__aarch64__) || defined(_M_ARM64)
+#define FASTFLOAT_NEON 1
+#endif
+
+#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON)
+#define FASTFLOAT_HAS_SIMD 1
+#endif
+
+#if defined(__GNUC__)
+// disable -Wcast-align=strict (GCC only)
+#define FASTFLOAT_SIMD_DISABLE_WARNINGS \
+  _Pragma("GCC diagnostic push") \
+  _Pragma("GCC diagnostic ignored \"-Wcast-align\"")
+#else
+#define FASTFLOAT_SIMD_DISABLE_WARNINGS
+#endif
+
+#if defined(__GNUC__)
+#define FASTFLOAT_SIMD_RESTORE_WARNINGS \
+  _Pragma("GCC diagnostic pop")
+#else
+#define FASTFLOAT_SIMD_RESTORE_WARNINGS
+#endif
+
+
+
+#ifdef FASTFLOAT_VISUAL_STUDIO
+#define fastfloat_really_inline __forceinline
+#else
+#define fastfloat_really_inline inline __attribute__((always_inline))
+#endif
+
+#ifndef FASTFLOAT_ASSERT
+#define FASTFLOAT_ASSERT(x)  { ((void)(x)); }
+#endif
+
+#ifndef FASTFLOAT_DEBUG_ASSERT
+#define FASTFLOAT_DEBUG_ASSERT(x) { ((void)(x)); }
+#endif
+
+// rust style `try!()` macro, or `?` operator
+#define FASTFLOAT_TRY(x) { if (!(x)) return false; }
+
+#define FASTFLOAT_ENABLE_IF(...) typename std::enable_if<(__VA_ARGS__), int>::type
+
+
+namespace fast_float {
+
+fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() {
+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED
+  return std::is_constant_evaluated();
+#else
+  return false;
+#endif
+}
+
+template <typename T>
+fastfloat_really_inline constexpr bool is_supported_float_type() {
+  return std::is_same<T, float>::value || std::is_same<T, double>::value;
+}
+
+template <typename UC>
+fastfloat_really_inline constexpr bool is_supported_char_type() {
+  return
+    std::is_same<UC, char>::value ||
+    std::is_same<UC, wchar_t>::value ||
+    std::is_same<UC, char16_t>::value ||
+    std::is_same<UC, char32_t>::value;
+}
+
+// Compares two ASCII strings in a case insensitive manner.
+template <typename UC>
+inline FASTFLOAT_CONSTEXPR14 bool
+fastfloat_strncasecmp(UC const * input1, UC const * input2, size_t length) {
+  char running_diff{0};
+  for (size_t i = 0; i < length; ++i) {
+    running_diff |= (char(input1[i]) ^ char(input2[i]));
+  }
+  return (running_diff == 0) || (running_diff == 32);
+}
+
+#ifndef FLT_EVAL_METHOD
+#error "FLT_EVAL_METHOD should be defined, please include cfloat."
+#endif
+
+// a pointer and a length to a contiguous block of memory
+template <typename T>
+struct span {
+  const T* ptr;
+  size_t length;
+  constexpr span(const T* _ptr, size_t _length) : ptr(_ptr), length(_length) {}
+  constexpr span() : ptr(nullptr), length(0) {}
+
+  constexpr size_t len() const noexcept {
+    return length;
+  }
+
+  FASTFLOAT_CONSTEXPR14 const T& operator[](size_t index) const noexcept {
+    FASTFLOAT_DEBUG_ASSERT(index < length);
+    return ptr[index];
+  }
+};
+
+struct value128 {
+  uint64_t low;
+  uint64_t high;
+  constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
+  constexpr value128() : low(0), high(0) {}
+};
+
+/* Helper C++14 constexpr generic implementation of leading_zeroes */
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+int leading_zeroes_generic(uint64_t input_num, int last_bit = 0) {
+    if(input_num & uint64_t(0xffffffff00000000)) { input_num >>= 32; last_bit |= 32; }
+    if(input_num & uint64_t(        0xffff0000)) { input_num >>= 16; last_bit |= 16; }
+    if(input_num & uint64_t(            0xff00)) { input_num >>=  8; last_bit |=  8; }
+    if(input_num & uint64_t(              0xf0)) { input_num >>=  4; last_bit |=  4; }
+    if(input_num & uint64_t(               0xc)) { input_num >>=  2; last_bit |=  2; }
+    if(input_num & uint64_t(               0x2)) { /* input_num >>=  1; */ last_bit |=  1; }
+    return 63 - last_bit;
+}
+
+/* result might be undefined when input_num is zero */
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+int leading_zeroes(uint64_t input_num) {
+  assert(input_num > 0);
+  if (cpp20_and_in_constexpr()) {
+    return leading_zeroes_generic(input_num);
+  }
+#ifdef FASTFLOAT_VISUAL_STUDIO
+  #if defined(_M_X64) || defined(_M_ARM64)
+  unsigned long leading_zero = 0;
+  // Search the mask data from most significant bit (MSB)
+  // to least significant bit (LSB) for a set bit (1).
+  _BitScanReverse64(&leading_zero, input_num);
+  return (int)(63 - leading_zero);
+  #else
+  return leading_zeroes_generic(input_num);
+  #endif
+#else
+  return __builtin_clzll(input_num);
+#endif
+}
+
+// slow emulation routine for 32-bit
+fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) {
+    return x * (uint64_t)y;
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+uint64_t umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) {
+  uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd);
+  uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd);
+  uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32));
+  uint64_t adbc_carry = !!(adbc < ad);
+  uint64_t lo = bd + (adbc << 32);
+  *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
+        (adbc_carry << 32) + !!(lo < bd);
+  return lo;
+}
+
+#ifdef FASTFLOAT_32BIT
+
+// slow emulation routine for 32-bit
+#if !defined(__MINGW64__)
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) {
+  return umul128_generic(ab, cd, hi);
+}
+#endif // !__MINGW64__
+
+#endif // FASTFLOAT_32BIT
+
+
+// compute 64-bit a*b
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+value128 full_multiplication(uint64_t a, uint64_t b) {
+  if (cpp20_and_in_constexpr()) {
+    value128 answer;
+    answer.low = umul128_generic(a, b, &answer.high);
+    return answer;
+  }
+  value128 answer;
+#if defined(_M_ARM64) && !defined(__MINGW32__)
+  // ARM64 has native support for 64-bit multiplications, no need to emulate
+  // But MinGW on ARM64 doesn't have native support for 64-bit multiplications
+  answer.high = __umulh(a, b);
+  answer.low = a * b;
+#elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__))
+  answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64
+#elif defined(FASTFLOAT_64BIT)
+  __uint128_t r = ((__uint128_t)a) * b;
+  answer.low = uint64_t(r);
+  answer.high = uint64_t(r >> 64);
+#else
+  answer.low = umul128_generic(a, b, &answer.high);
+#endif
+  return answer;
+}
+
+struct adjusted_mantissa {
+  uint64_t mantissa{0};
+  int32_t power2{0}; // a negative value indicates an invalid result
+  adjusted_mantissa() = default;
+  constexpr bool operator==(const adjusted_mantissa &o) const {
+    return mantissa == o.mantissa && power2 == o.power2;
+  }
+  constexpr bool operator!=(const adjusted_mantissa &o) const {
+    return mantissa != o.mantissa || power2 != o.power2;
+  }
+};
+
+// Bias so we can get the real exponent with an invalid adjusted_mantissa.
+constexpr static int32_t invalid_am_bias = -0x8000;
+
+// used for binary_format_lookup_tables<T>::max_mantissa
+constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;
+
+template <typename T, typename U = void>
+struct binary_format_lookup_tables;
+
+template <typename T> struct binary_format : binary_format_lookup_tables<T> {
+  using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;
+
+  static inline constexpr int mantissa_explicit_bits();
+  static inline constexpr int minimum_exponent();
+  static inline constexpr int infinite_power();
+  static inline constexpr int sign_index();
+  static inline constexpr int min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
+  static inline constexpr int max_exponent_fast_path();
+  static inline constexpr int max_exponent_round_to_even();
+  static inline constexpr int min_exponent_round_to_even();
+  static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
+  static inline constexpr uint64_t max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
+  static inline constexpr int largest_power_of_ten();
+  static inline constexpr int smallest_power_of_ten();
+  static inline constexpr T exact_power_of_ten(int64_t power);
+  static inline constexpr size_t max_digits();
+  static inline constexpr equiv_uint exponent_mask();
+  static inline constexpr equiv_uint mantissa_mask();
+  static inline constexpr equiv_uint hidden_bit_mask();
+};
+
+template <typename U>
+struct binary_format_lookup_tables<double, U> {
+  static constexpr double powers_of_ten[] = {
+      1e0,  1e1,  1e2,  1e3,  1e4,  1e5,  1e6,  1e7,  1e8,  1e9,  1e10, 1e11,
+      1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
+
+  // Largest integer value v so that (5**index * v) <= 1<<53.
+  // 0x10000000000000 == 1 << 53
+  static constexpr uint64_t max_mantissa[] = {
+      0x10000000000000,
+      0x10000000000000 / 5,
+      0x10000000000000 / (5 * 5),
+      0x10000000000000 / (5 * 5 * 5),
+      0x10000000000000 / (5 * 5 * 5 * 5),
+      0x10000000000000 / (constant_55555),
+      0x10000000000000 / (constant_55555 * 5),
+      0x10000000000000 / (constant_55555 * 5 * 5),
+      0x10000000000000 / (constant_55555 * 5 * 5 * 5),
+      0x10000000000000 / (constant_55555 * 5 * 5 * 5 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555),
+      0x10000000000000 / (constant_55555 * constant_55555 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
+      0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5)};
+};
+
+template <typename U>
+constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[];
+
+template <typename U>
+constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[];
+
+template <typename U>
+struct binary_format_lookup_tables<float, U> {
+  static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
+                                     1e6f, 1e7f, 1e8f, 1e9f, 1e10f};
+
+  // Largest integer value v so that (5**index * v) <= 1<<24.
+  // 0x1000000 == 1<<24
+  static constexpr uint64_t max_mantissa[] = {
+        0x1000000,
+        0x1000000 / 5,
+        0x1000000 / (5 * 5),
+        0x1000000 / (5 * 5 * 5),
+        0x1000000 / (5 * 5 * 5 * 5),
+        0x1000000 / (constant_55555),
+        0x1000000 / (constant_55555 * 5),
+        0x1000000 / (constant_55555 * 5 * 5),
+        0x1000000 / (constant_55555 * 5 * 5 * 5),
+        0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
+        0x1000000 / (constant_55555 * constant_55555),
+        0x1000000 / (constant_55555 * constant_55555 * 5)};
+};
+
+template <typename U>
+constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[];
+
+template <typename U>
+constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[];
+
+template <> inline constexpr int binary_format<double>::min_exponent_fast_path() {
+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
+  return 0;
+#else
+  return -22;
+#endif
+}
+
+template <> inline constexpr int binary_format<float>::min_exponent_fast_path() {
+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
+  return 0;
+#else
+  return -10;
+#endif
+}
+
+template <> inline constexpr int binary_format<double>::mantissa_explicit_bits() {
+  return 52;
+}
+template <> inline constexpr int binary_format<float>::mantissa_explicit_bits() {
+  return 23;
+}
+
+template <> inline constexpr int binary_format<double>::max_exponent_round_to_even() {
+  return 23;
+}
+
+template <> inline constexpr int binary_format<float>::max_exponent_round_to_even() {
+  return 10;
+}
+
+template <> inline constexpr int binary_format<double>::min_exponent_round_to_even() {
+  return -4;
+}
+
+template <> inline constexpr int binary_format<float>::min_exponent_round_to_even() {
+  return -17;
+}
+
+template <> inline constexpr int binary_format<double>::minimum_exponent() {
+  return -1023;
+}
+template <> inline constexpr int binary_format<float>::minimum_exponent() {
+  return -127;
+}
+
+template <> inline constexpr int binary_format<double>::infinite_power() {
+  return 0x7FF;
+}
+template <> inline constexpr int binary_format<float>::infinite_power() {
+  return 0xFF;
+}
+
+template <> inline constexpr int binary_format<double>::sign_index() { return 63; }
+template <> inline constexpr int binary_format<float>::sign_index() { return 31; }
+
+template <> inline constexpr int binary_format<double>::max_exponent_fast_path() {
+  return 22;
+}
+template <> inline constexpr int binary_format<float>::max_exponent_fast_path() {
+  return 10;
+}
+
+template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
+  return uint64_t(2) << mantissa_explicit_bits();
+}
+template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path(int64_t power) {
+  // caller is responsible to ensure that
+  // power >= 0 && power <= 22
+  //
+  // Work around clang bug https://godbolt.org/z/zedh7rrhc
+  return (void)max_mantissa[0], max_mantissa[power];
+}
+template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
+  return uint64_t(2) << mantissa_explicit_bits();
+}
+template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path(int64_t power) {
+  // caller is responsible to ensure that
+  // power >= 0 && power <= 10
+  //
+  // Work around clang bug https://godbolt.org/z/zedh7rrhc
+  return (void)max_mantissa[0], max_mantissa[power];
+}
+
+template <>
+inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) {
+  // Work around clang bug https://godbolt.org/z/zedh7rrhc
+  return (void)powers_of_ten[0], powers_of_ten[power];
+}
+template <>
+inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
+  // Work around clang bug https://godbolt.org/z/zedh7rrhc
+  return (void)powers_of_ten[0], powers_of_ten[power];
+}
+
+
+template <>
+inline constexpr int binary_format<double>::largest_power_of_ten() {
+  return 308;
+}
+template <>
+inline constexpr int binary_format<float>::largest_power_of_ten() {
+  return 38;
+}
+
+template <>
+inline constexpr int binary_format<double>::smallest_power_of_ten() {
+  return -342;
+}
+template <>
+inline constexpr int binary_format<float>::smallest_power_of_ten() {
+  return -65;
+}
+
+template <> inline constexpr size_t binary_format<double>::max_digits() {
+  return 769;
+}
+template <> inline constexpr size_t binary_format<float>::max_digits() {
+  return 114;
+}
+
+template <> inline constexpr binary_format<float>::equiv_uint
+    binary_format<float>::exponent_mask() {
+  return 0x7F800000;
+}
+template <> inline constexpr binary_format<double>::equiv_uint
+    binary_format<double>::exponent_mask() {
+  return 0x7FF0000000000000;
+}
+
+template <> inline constexpr binary_format<float>::equiv_uint
+    binary_format<float>::mantissa_mask() {
+  return 0x007FFFFF;
+}
+template <> inline constexpr binary_format<double>::equiv_uint
+    binary_format<double>::mantissa_mask() {
+  return 0x000FFFFFFFFFFFFF;
+}
+
+template <> inline constexpr binary_format<float>::equiv_uint
+    binary_format<float>::hidden_bit_mask() {
+  return 0x00800000;
+}
+template <> inline constexpr binary_format<double>::equiv_uint
+    binary_format<double>::hidden_bit_mask() {
+  return 0x0010000000000000;
+}
+
+template<typename T>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+void to_float(bool negative, adjusted_mantissa am, T &value) {
+  using fastfloat_uint = typename binary_format<T>::equiv_uint;
+  fastfloat_uint word = (fastfloat_uint)am.mantissa;
+  word |= fastfloat_uint(am.power2) << binary_format<T>::mantissa_explicit_bits();
+  word |= fastfloat_uint(negative) << binary_format<T>::sign_index();
+#if FASTFLOAT_HAS_BIT_CAST
+  value = std::bit_cast<T>(word);
+#else
+  ::memcpy(&value, &word, sizeof(T));
+#endif
+}
+
+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
+template <typename = void>
+struct space_lut {
+  static constexpr bool value[] = {
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+};
+
+template <typename T>
+constexpr bool space_lut<T>::value[];
+
+inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; }
+#endif
+
+template<typename UC>
+static constexpr uint64_t int_cmp_zeros()
+{
+    static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4), "Unsupported character size");
+    return (sizeof(UC) == 1) ? 0x3030303030303030 : (sizeof(UC) == 2) ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | uint64_t(UC('0')) << 16 | UC('0')) : (uint64_t(UC('0')) << 32 | UC('0'));
+}
+template<typename UC>
+static constexpr int int_cmp_len()
+{
+    return sizeof(uint64_t) / sizeof(UC);
+}
+template<typename UC>
+static constexpr UC const * str_const_nan()
+{
+    return nullptr;
+}
+template<>
+constexpr char const * str_const_nan<char>()
+{
+    return "nan";
+}
+template<>
+constexpr wchar_t const * str_const_nan<wchar_t>()
+{
+    return L"nan";
+}
+template<>
+constexpr char16_t const * str_const_nan<char16_t>()
+{
+    return u"nan";
+}
+template<>
+constexpr char32_t const * str_const_nan<char32_t>()
+{
+    return U"nan";
+}
+template<typename UC>
+static constexpr UC const * str_const_inf()
+{
+    return nullptr;
+}
+template<>
+constexpr char const * str_const_inf<char>()
+{
+    return "infinity";
+}
+template<>
+constexpr wchar_t const * str_const_inf<wchar_t>()
+{
+    return L"infinity";
+}
+template<>
+constexpr char16_t const * str_const_inf<char16_t>()
+{
+    return u"infinity";
+}
+template<>
+constexpr char32_t const * str_const_inf<char32_t>()
+{
+    return U"infinity";
+}
+
+
+template <typename = void>
+struct int_luts {
+  static constexpr uint8_t chdigit[] = {
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, 255, 255, 255, 255,
+    255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 255, 255, 255, 255, 255,
+    255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255
+  };
+
+  static constexpr size_t maxdigits_u64[] = {
+    64, 41, 32, 28, 25, 23, 22, 21,
+    20, 19, 18, 18, 17, 17, 16, 16,
+    16, 16, 15, 15, 15, 15, 14, 14,
+    14, 14, 14, 14, 14, 13, 13, 13,
+    13, 13, 13
+  };
+
+  static constexpr uint64_t min_safe_u64[] = {
+    9223372036854775808ull, 12157665459056928801ull, 4611686018427387904, 7450580596923828125, 4738381338321616896,
+    3909821048582988049, 9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull, 5559917313492231481,
+    2218611106740436992, 8650415919381337933, 2177953337809371136, 6568408355712890625, 1152921504606846976, 
+    2862423051509815793, 6746640616477458432, 15181127029874798299ull, 1638400000000000000, 3243919932521508681,
+    6221821273427820544, 11592836324538749809ull, 876488338465357824, 1490116119384765625, 2481152873203736576,
+    4052555153018976267, 6502111422497947648, 10260628712958602189ull, 15943230000000000000ull, 787662783788549761,
+    1152921504606846976, 1667889514952984961, 2386420683693101056, 3379220508056640625, 4738381338321616896
+  };
+};
+
+template <typename T>
+constexpr uint8_t int_luts<T>::chdigit[];
+
+template <typename T>
+constexpr size_t int_luts<T>::maxdigits_u64[];
+
+template <typename T>
+constexpr uint64_t int_luts<T>::min_safe_u64[];
+
+template <typename UC>
+fastfloat_really_inline
+constexpr uint8_t ch_to_digit(UC c) { return int_luts<>::chdigit[static_cast<unsigned char>(c)]; }
+
+fastfloat_really_inline
+constexpr size_t max_digits_u64(int base) { return int_luts<>::maxdigits_u64[base - 2]; }
+
+// If a u64 is exactly max_digits_u64() in length, this is
+// the value below which it has definitely overflowed. 
+fastfloat_really_inline
+constexpr uint64_t min_safe_u64(int base) { return int_luts<>::min_safe_u64[base - 2]; }
+
+} // namespace fast_float
+
+#endif
+
+
+#ifndef FASTFLOAT_FAST_FLOAT_H
+#define FASTFLOAT_FAST_FLOAT_H
+
+
+namespace fast_float {
+/**
+ * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting
+ * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale.
+ * The resulting floating-point value is the closest floating-point values (using either float or double),
+ * using the "round to even" convention for values that would otherwise fall right in-between two values.
+ * That is, we provide exact parsing according to the IEEE standard.
+ *
+ * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the
+ * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned
+ * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored.
+ *
+ * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`).
+ *
+ * Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
+ * the type `fast_float::chars_format`. It is a bitset value: we check whether
+ * `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
+ * to determine whether we allow the fixed point and scientific notation respectively.
+ * The default is  `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
+ */
+template<typename T, typename UC = char, typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())>
+FASTFLOAT_CONSTEXPR20
+from_chars_result_t<UC> from_chars(UC const * first, UC const * last,
+                             T &value, chars_format fmt = chars_format::general)  noexcept;
+
+/**
+ * Like from_chars, but accepts an `options` argument to govern number parsing.
+ */
+template<typename T, typename UC = char>
+FASTFLOAT_CONSTEXPR20
+from_chars_result_t<UC> from_chars_advanced(UC const * first, UC const * last,
+                                      T &value, parse_options_t<UC> options)  noexcept;
+/**
+* from_chars for integer types.
+*/
+template <typename T, typename UC = char, typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())>
+FASTFLOAT_CONSTEXPR20
+from_chars_result_t<UC> from_chars(UC const * first, UC const * last, T& value, int base = 10) noexcept;
+
+} // namespace fast_float
+#endif // FASTFLOAT_FAST_FLOAT_H
+
+#ifndef FASTFLOAT_ASCII_NUMBER_H
+#define FASTFLOAT_ASCII_NUMBER_H
+
+#include <cctype>
+#include <cstdint>
+#include <cstring>
+#include <iterator>
+#include <limits>
+#include <type_traits>
+
+
+#ifdef FASTFLOAT_SSE2
+#include <emmintrin.h>
+#endif
+
+#ifdef FASTFLOAT_NEON
+#include <arm_neon.h>
+#endif
+
+namespace fast_float {
+
+template <typename UC>
+fastfloat_really_inline constexpr bool has_simd_opt() {
+#ifdef FASTFLOAT_HAS_SIMD
+  return std::is_same<UC, char16_t>::value;
+#else
+  return false;
+#endif
+}
+
+// Next function can be micro-optimized, but compilers are entirely
+// able to optimize it well.
+template <typename UC>
+fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
+  return !(c > UC('9') || c < UC('0'));
+}
+
+fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
+  return (val & 0xFF00000000000000) >> 56
+    | (val & 0x00FF000000000000) >> 40
+    | (val & 0x0000FF0000000000) >> 24
+    | (val & 0x000000FF00000000) >> 8
+    | (val & 0x00000000FF000000) << 8
+    | (val & 0x0000000000FF0000) << 24
+    | (val & 0x000000000000FF00) << 40
+    | (val & 0x00000000000000FF) << 56;
+}
+
+// Read 8 UC into a u64. Truncates UC if not char.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+uint64_t read8_to_u64(const UC *chars) {
+  if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
+    uint64_t val = 0;
+    for(int i = 0; i < 8; ++i) {
+      val |= uint64_t(uint8_t(*chars)) << (i*8);
+      ++chars;
+    }
+    return val;
+  }
+  uint64_t val;
+  ::memcpy(&val, chars, sizeof(uint64_t));
+#if FASTFLOAT_IS_BIG_ENDIAN == 1
+  // Need to read as-if the number was in little-endian order.
+  val = byteswap(val);
+#endif
+  return val;
+}
+
+#ifdef FASTFLOAT_SSE2
+
+fastfloat_really_inline
+uint64_t simd_read8_to_u64(const __m128i data) {
+FASTFLOAT_SIMD_DISABLE_WARNINGS
+  const __m128i packed = _mm_packus_epi16(data, data);
+#ifdef FASTFLOAT_64BIT
+  return uint64_t(_mm_cvtsi128_si64(packed));
+#else
+  uint64_t value;
+  // Visual Studio + older versions of GCC don't support _mm_storeu_si64
+  _mm_storel_epi64(reinterpret_cast<__m128i*>(&value), packed);
+  return value;
+#endif
+FASTFLOAT_SIMD_RESTORE_WARNINGS
+}
+
+fastfloat_really_inline
+uint64_t simd_read8_to_u64(const char16_t* chars) {
+FASTFLOAT_SIMD_DISABLE_WARNINGS
+  return simd_read8_to_u64(_mm_loadu_si128(reinterpret_cast<const __m128i*>(chars)));
+FASTFLOAT_SIMD_RESTORE_WARNINGS
+}
+
+#elif defined(FASTFLOAT_NEON)
+
+
+fastfloat_really_inline
+uint64_t simd_read8_to_u64(const uint16x8_t data) {
+FASTFLOAT_SIMD_DISABLE_WARNINGS
+  uint8x8_t utf8_packed = vmovn_u16(data);
+  return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
+FASTFLOAT_SIMD_RESTORE_WARNINGS
+}
+
+fastfloat_really_inline
+uint64_t simd_read8_to_u64(const char16_t* chars) {
+FASTFLOAT_SIMD_DISABLE_WARNINGS
+  return simd_read8_to_u64(vld1q_u16(reinterpret_cast<const uint16_t*>(chars)));
+FASTFLOAT_SIMD_RESTORE_WARNINGS
+}
+
+#endif // FASTFLOAT_SSE2
+
+// MSVC SFINAE is broken pre-VS2017
+#if defined(_MSC_VER) && _MSC_VER <= 1900
+template <typename UC>
+#else
+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
+#endif
+// dummy for compile
+uint64_t simd_read8_to_u64(UC const*) {
+  return 0;
+}
+
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+void write_u64(uint8_t *chars, uint64_t val) {
+  if (cpp20_and_in_constexpr()) {
+    for(int i = 0; i < 8; ++i) {
+      *chars = uint8_t(val);
+      val >>= 8;
+      ++chars;
+    }
+    return;
+  }
+#if FASTFLOAT_IS_BIG_ENDIAN == 1
+  // Need to read as-if the number was in little-endian order.
+  val = byteswap(val);
+#endif
+  ::memcpy(chars, &val, sizeof(uint64_t));
+}
+
+// credit  @aqrit
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+uint32_t parse_eight_digits_unrolled(uint64_t val) {
+  const uint64_t mask = 0x000000FF000000FF;
+  const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
+  const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
+  val -= 0x3030303030303030;
+  val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
+  val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
+  return uint32_t(val);
+}
+
+
+// Call this if chars are definitely 8 digits.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+uint32_t parse_eight_digits_unrolled(UC const * chars)  noexcept {
+  if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
+    return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
+  }
+  return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
+}
+
+
+// credit @aqrit
+fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val)  noexcept {
+  return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
+     0x8080808080808080));
+}
+
+
+#ifdef FASTFLOAT_HAS_SIMD
+
+// Call this if chars might not be 8 digits.
+// Using this style (instead of is_made_of_eight_digits_fast() then parse_eight_digits_unrolled())
+// ensures we don't load SIMD registers twice.
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+bool simd_parse_if_eight_digits_unrolled(const char16_t* chars, uint64_t& i) noexcept {
+  if (cpp20_and_in_constexpr()) {
+    return false;
+  }   
+#ifdef FASTFLOAT_SSE2
+FASTFLOAT_SIMD_DISABLE_WARNINGS
+  const __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i*>(chars));
+
+  // (x - '0') <= 9
+  // http://0x80.pl/articles/simd-parsing-int-sequences.html
+  const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
+  const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));
+
+  if (_mm_movemask_epi8(t1) == 0) {
+    i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
+    return true;
+  }
+  else return false;
+FASTFLOAT_SIMD_RESTORE_WARNINGS
+#elif defined(FASTFLOAT_NEON)
+FASTFLOAT_SIMD_DISABLE_WARNINGS
+  const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t*>(chars));
+  
+  // (x - '0') <= 9
+  // http://0x80.pl/articles/simd-parsing-int-sequences.html
+  const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0'));
+  const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));
+
+  if (vminvq_u16(mask) == 0xFFFF) {
+    i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
+    return true;
+  }
+  else return false;
+FASTFLOAT_SIMD_RESTORE_WARNINGS
+#else
+  (void)chars; (void)i;
+  return false;
+#endif // FASTFLOAT_SSE2
+}
+
+#endif // FASTFLOAT_HAS_SIMD
+
+// MSVC SFINAE is broken pre-VS2017
+#if defined(_MSC_VER) && _MSC_VER <= 1900
+template <typename UC>
+#else
+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
+#endif
+// dummy for compile
+bool simd_parse_if_eight_digits_unrolled(UC const*, uint64_t&) {
+  return 0;
+}
+
+
+template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+void loop_parse_if_eight_digits(const UC*& p, const UC* const pend, uint64_t& i) {
+  if (!has_simd_opt<UC>()) {
+    return;
+  }
+  while ((std::distance(p, pend) >= 8) && simd_parse_if_eight_digits_unrolled(p, i)) { // in rare cases, this will overflow, but that's ok
+    p += 8;
+  }
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+void loop_parse_if_eight_digits(const char*& p, const char* const pend, uint64_t& i) {
+  // optimizes better than parse_if_eight_digits_unrolled() for UC = char.
+  while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(read8_to_u64(p))) {
+    i = i * 100000000 + parse_eight_digits_unrolled(read8_to_u64(p)); // in rare cases, this will overflow, but that's ok
+    p += 8;
+  }
+}
+
+template <typename UC>
+struct parsed_number_string_t {
+  int64_t exponent{0};
+  uint64_t mantissa{0};
+  UC const * lastmatch{nullptr};
+  bool negative{false};
+  bool valid{false};
+  bool too_many_digits{false};
+  // contains the range of the significant digits
+  span<const UC> integer{};  // non-nullable
+  span<const UC> fraction{}; // nullable
+};
+
+using byte_span = span<const char>;
+using parsed_number_string = parsed_number_string_t<char>;
+
+// Assuming that you use no more than 19 digits, this will
+// parse an ASCII string.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, parse_options_t<UC> options) noexcept {
+  chars_format const fmt = options.format;
+  UC const decimal_point = options.decimal_point;
+
+  parsed_number_string_t<UC> answer;
+  answer.valid = false;
+  answer.too_many_digits = false;
+  answer.negative = (*p == UC('-'));
+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
+  if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) {
+#else
+  if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
+#endif
+    ++p;
+    if (p == pend) {
+      return answer;
+    }
+    if (fmt & FASTFLOAT_JSONFMT) {
+      if (!is_integer(*p)) { // a sign must be followed by an integer
+        return answer;
+      }    
+    } else {
+      if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
+        return answer;
+      }
+    }
+  }
+  UC const * const start_digits = p;
+
+  uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
+
+  while ((p != pend) && is_integer(*p)) {
+    // a multiplication by 10 is cheaper than an arbitrary integer
+    // multiplication
+    i = 10 * i +
+        uint64_t(*p - UC('0')); // might overflow, we will handle the overflow later
+    ++p;
+  }
+  UC const * const end_of_integer_part = p;
+  int64_t digit_count = int64_t(end_of_integer_part - start_digits);
+  answer.integer = span<const UC>(start_digits, size_t(digit_count));
+  if (fmt & FASTFLOAT_JSONFMT) {
+    // at least 1 digit in integer part, without leading zeros
+    if (digit_count == 0 || (start_digits[0] == UC('0') && digit_count > 1)) {
+      return answer;
+    }
+  }
+
+  int64_t exponent = 0;
+  const bool has_decimal_point = (p != pend) && (*p == decimal_point);
+  if (has_decimal_point) {
+    ++p;
+    UC const * before = p;
+    // can occur at most twice without overflowing, but let it occur more, since
+    // for integers with many digits, digit parsing is the primary bottleneck.
+    loop_parse_if_eight_digits(p, pend, i);
+
+    while ((p != pend) && is_integer(*p)) {
+      uint8_t digit = uint8_t(*p - UC('0'));
+      ++p;
+      i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
+    }
+    exponent = before - p;
+    answer.fraction = span<const UC>(before, size_t(p - before));
+    digit_count -= exponent;
+  }
+  if (fmt & FASTFLOAT_JSONFMT) {
+    // at least 1 digit in fractional part
+    if (has_decimal_point && exponent == 0) {
+      return answer;
+    }
+  } 
+  else if (digit_count == 0) { // we must have encountered at least one integer!
+    return answer;
+  }
+  int64_t exp_number = 0;            // explicit exponential part
+  if ( ((fmt & chars_format::scientific) &&
+        (p != pend) &&
+        ((UC('e') == *p) || (UC('E') == *p)))
+       ||
+       ((fmt & FASTFLOAT_FORTRANFMT) &&
+        (p != pend) &&
+        ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || (UC('D') == *p)))) {
+    UC const * location_of_e = p;
+    if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || (UC('D') == *p)) {
+      ++p;
+    }
+    bool neg_exp = false;
+    if ((p != pend) && (UC('-') == *p)) {
+      neg_exp = true;
+      ++p;
+    } else if ((p != pend) && (UC('+') == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
+      ++p;
+    }
+    if ((p == pend) || !is_integer(*p)) {
+      if(!(fmt & chars_format::fixed)) {
+        // We are in error.
+        return answer;
+      }
+      // Otherwise, we will be ignoring the 'e'.
+      p = location_of_e;
+    } else {
+      while ((p != pend) && is_integer(*p)) {
+        uint8_t digit = uint8_t(*p - UC('0'));
+        if (exp_number < 0x10000000) {
+          exp_number = 10 * exp_number + digit;
+        }
+        ++p;
+      }
+      if(neg_exp) { exp_number = - exp_number; }
+      exponent += exp_number;
+    }
+  } else {
+    // If it scientific and not fixed, we have to bail out.
+    if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
+  }
+  answer.lastmatch = p;
+  answer.valid = true;
+
+  // If we frequently had to deal with long strings of digits,
+  // we could extend our code by using a 128-bit integer instead
+  // of a 64-bit integer. However, this is uncommon.
+  //
+  // We can deal with up to 19 digits.
+  if (digit_count > 19) { // this is uncommon
+    // It is possible that the integer had an overflow.
+    // We have to handle the case where we have 0.0000somenumber.
+    // We need to be mindful of the case where we only have zeroes...
+    // E.g., 0.000000000...000.
+    UC const * start = start_digits;
+    while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
+      if(*start == UC('0')) { digit_count --; }
+      start++;
+    }
+
+    if (digit_count > 19) {
+      answer.too_many_digits = true;
+      // Let us start again, this time, avoiding overflows.
+      // We don't need to check if is_integer, since we use the
+      // pre-tokenized spans from above.
+      i = 0;
+      p = answer.integer.ptr;
+      UC const* int_end = p + answer.integer.len();
+      const uint64_t minimal_nineteen_digit_integer{ 1000000000000000000 };
+      while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
+        i = i * 10 + uint64_t(*p - UC('0'));
+        ++p;
+      }
+      if (i >= minimal_nineteen_digit_integer) { // We have a big integers
+        exponent = end_of_integer_part - p + exp_number;
+      }
+      else { // We have a value with a fractional component.
+        p = answer.fraction.ptr;
+        UC const* frac_end = p + answer.fraction.len();
+        while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
+          i = i * 10 + uint64_t(*p - UC('0'));
+          ++p;
+        }
+        exponent = answer.fraction.ptr - p + exp_number;
+      }
+      // We have now corrected both exponent and i, to a truncated value
+    }
+  }
+  answer.exponent = exponent;
+  answer.mantissa = i;
+  return answer;
+}
+
+template <typename T, typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+from_chars_result_t<UC> parse_int_string(UC const* p, UC const* pend, T& value, int base)
+{
+  from_chars_result_t<UC> answer;
+  
+  UC const* const first = p;
+
+  bool negative = (*p == UC('-'));
+  if (!std::is_signed<T>::value && negative) {
+    answer.ec = std::errc::invalid_argument;
+    answer.ptr = first;
+    return answer;
+  }
+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
+  if ((*p == UC('-')) || (*p == UC('+'))) {
+#else
+  if (*p == UC('-')) {
+#endif
+    ++p;
+  }
+
+  UC const* const start_num = p;
+  while (*p == UC('0')) { 
+    ++p; 
+  }
+  const bool has_leading_zeros = p > start_num;
+
+  UC const* const start_digits = p;
+
+  uint64_t i = 0;
+  if (base == 10) {
+    loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible
+  }
+  while (p != pend) {
+    uint8_t digit = ch_to_digit(*p);
+    if (digit >= base) {
+      break;
+    }
+    i = uint64_t(base) * i + digit; // might overflow, check this later
+    p++; 
+  }
+  
+  size_t digit_count = size_t(p - start_digits);
+
+  if (digit_count == 0) {
+    if (has_leading_zeros) {
+      value = 0;
+      answer.ec = std::errc();
+      answer.ptr = p;
+    }
+    else {
+      answer.ec = std::errc::invalid_argument;
+      answer.ptr = first;
+    }
+    return answer; 
+  }
+
+  answer.ptr = p;
+
+  // check u64 overflow
+  size_t max_digits = max_digits_u64(base);
+  if (digit_count > max_digits) {
+    answer.ec = std::errc::result_out_of_range;
+    return answer;
+  }
+  // this check can be eliminated for all other types, but they will all require a max_digits(base) equivalent
+  if (digit_count == max_digits && i < min_safe_u64(base)) {
+    answer.ec = std::errc::result_out_of_range;
+    return answer;
+  }
+
+  // check other types overflow
+  if (!std::is_same<T, uint64_t>::value) {
+    if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) {
+      answer.ec = std::errc::result_out_of_range;
+      return answer;
+    }
+  }
+
+  if (negative) {
+#ifdef FASTFLOAT_VISUAL_STUDIO
+#pragma warning(push)
+#pragma warning(disable: 4146) 
+#endif
+    // this weird workaround is required because:
+    // - converting unsigned to signed when its value is greater than signed max is UB pre-C++23.
+    // - reinterpret_casting (~i + 1) would work, but it is not constexpr
+    // this is always optimized into a neg instruction.
+    value = T(-std::numeric_limits<T>::max() - T(i - std::numeric_limits<T>::max()));
+#ifdef FASTFLOAT_VISUAL_STUDIO
+#pragma warning(pop)
+#endif
+  }
+  else { value = T(i); }
+
+  answer.ec = std::errc();
+  return answer;
+}
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_FAST_TABLE_H
+#define FASTFLOAT_FAST_TABLE_H
+
+#include <cstdint>
+
+namespace fast_float {
+
+/**
+ * When mapping numbers from decimal to binary,
+ * we go from w * 10^q to m * 2^p but we have
+ * 10^q = 5^q * 2^q, so effectively
+ * we are trying to match
+ * w * 2^q * 5^q to m * 2^p. Thus the powers of two
+ * are not a concern since they can be represented
+ * exactly using the binary notation, only the powers of five
+ * affect the binary significand.
+ */
+
+/**
+ * The smallest non-zero float (binary64) is 2^-1074.
+ * We take as input numbers of the form w x 10^q where w < 2^64.
+ * We have that w * 10^-343  <  2^(64-344) 5^-343 < 2^-1076.
+ * However, we have that
+ * (2^64-1) * 10^-342 =  (2^64-1) * 2^-342 * 5^-342 > 2^-1074.
+ * Thus it is possible for a number of the form w * 10^-342 where
+ * w is a 64-bit value to be a non-zero floating-point number.
+ *********
+ * Any number of form w * 10^309 where w>= 1 is going to be
+ * infinite in binary64 so we never need to worry about powers
+ * of 5 greater than 308.
+ */
+template <class unused = void>
+struct powers_template {
+
+constexpr static int smallest_power_of_five = binary_format<double>::smallest_power_of_ten();
+constexpr static int largest_power_of_five = binary_format<double>::largest_power_of_ten();
+constexpr static int number_of_entries = 2 * (largest_power_of_five - smallest_power_of_five + 1);
+// Powers of five from 5^-342 all the way to 5^308 rounded toward one.
+constexpr static uint64_t power_of_five_128[number_of_entries] = {
+    0xeef453d6923bd65a,0x113faa2906a13b3f,
+    0x9558b4661b6565f8,0x4ac7ca59a424c507,
+    0xbaaee17fa23ebf76,0x5d79bcf00d2df649,
+    0xe95a99df8ace6f53,0xf4d82c2c107973dc,
+    0x91d8a02bb6c10594,0x79071b9b8a4be869,
+    0xb64ec836a47146f9,0x9748e2826cdee284,
+    0xe3e27a444d8d98b7,0xfd1b1b2308169b25,
+    0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7,
+    0xb208ef855c969f4f,0xbdbd2d335e51a935,
+    0xde8b2b66b3bc4723,0xad2c788035e61382,
+    0x8b16fb203055ac76,0x4c3bcb5021afcc31,
+    0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d,
+    0xd953e8624b85dd78,0xd71d6dad34a2af0d,
+    0x87d4713d6f33aa6b,0x8672648c40e5ad68,
+    0xa9c98d8ccb009506,0x680efdaf511f18c2,
+    0xd43bf0effdc0ba48,0x212bd1b2566def2,
+    0x84a57695fe98746d,0x14bb630f7604b57,
+    0xa5ced43b7e3e9188,0x419ea3bd35385e2d,
+    0xcf42894a5dce35ea,0x52064cac828675b9,
+    0x818995ce7aa0e1b2,0x7343efebd1940993,
+    0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8,
+    0xca66fa129f9b60a6,0xd41a26e077774ef6,
+    0xfd00b897478238d0,0x8920b098955522b4,
+    0x9e20735e8cb16382,0x55b46e5f5d5535b0,
+    0xc5a890362fddbc62,0xeb2189f734aa831d,
+    0xf712b443bbd52b7b,0xa5e9ec7501d523e4,
+    0x9a6bb0aa55653b2d,0x47b233c92125366e,
+    0xc1069cd4eabe89f8,0x999ec0bb696e840a,
+    0xf148440a256e2c76,0xc00670ea43ca250d,
+    0x96cd2a865764dbca,0x380406926a5e5728,
+    0xbc807527ed3e12bc,0xc605083704f5ecf2,
+    0xeba09271e88d976b,0xf7864a44c633682e,
+    0x93445b8731587ea3,0x7ab3ee6afbe0211d,
+    0xb8157268fdae9e4c,0x5960ea05bad82964,
+    0xe61acf033d1a45df,0x6fb92487298e33bd,
+    0x8fd0c16206306bab,0xa5d3b6d479f8e056,
+    0xb3c4f1ba87bc8696,0x8f48a4899877186c,
+    0xe0b62e2929aba83c,0x331acdabfe94de87,
+    0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14,
+    0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9,
+    0xdb71e91432b1a24a,0xc9e82cd9f69d6150,
+    0x892731ac9faf056e,0xbe311c083a225cd2,
+    0xab70fe17c79ac6ca,0x6dbd630a48aaf406,
+    0xd64d3d9db981787d,0x92cbbccdad5b108,
+    0x85f0468293f0eb4e,0x25bbf56008c58ea5,
+    0xa76c582338ed2621,0xaf2af2b80af6f24e,
+    0xd1476e2c07286faa,0x1af5af660db4aee1,
+    0x82cca4db847945ca,0x50d98d9fc890ed4d,
+    0xa37fce126597973c,0xe50ff107bab528a0,
+    0xcc5fc196fefd7d0c,0x1e53ed49a96272c8,
+    0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a,
+    0x9faacf3df73609b1,0x77b191618c54e9ac,
+    0xc795830d75038c1d,0xd59df5b9ef6a2417,
+    0xf97ae3d0d2446f25,0x4b0573286b44ad1d,
+    0x9becce62836ac577,0x4ee367f9430aec32,
+    0xc2e801fb244576d5,0x229c41f793cda73f,
+    0xf3a20279ed56d48a,0x6b43527578c1110f,
+    0x9845418c345644d6,0x830a13896b78aaa9,
+    0xbe5691ef416bd60c,0x23cc986bc656d553,
+    0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8,
+    0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9,
+    0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53,
+    0xe858ad248f5c22c9,0xd1b3400f8f9cff68,
+    0x91376c36d99995be,0x23100809b9c21fa1,
+    0xb58547448ffffb2d,0xabd40a0c2832a78a,
+    0xe2e69915b3fff9f9,0x16c90c8f323f516c,
+    0x8dd01fad907ffc3b,0xae3da7d97f6792e3,
+    0xb1442798f49ffb4a,0x99cd11cfdf41779c,
+    0xdd95317f31c7fa1d,0x40405643d711d583,
+    0x8a7d3eef7f1cfc52,0x482835ea666b2572,
+    0xad1c8eab5ee43b66,0xda3243650005eecf,
+    0xd863b256369d4a40,0x90bed43e40076a82,
+    0x873e4f75e2224e68,0x5a7744a6e804a291,
+    0xa90de3535aaae202,0x711515d0a205cb36,
+    0xd3515c2831559a83,0xd5a5b44ca873e03,
+    0x8412d9991ed58091,0xe858790afe9486c2,
+    0xa5178fff668ae0b6,0x626e974dbe39a872,
+    0xce5d73ff402d98e3,0xfb0a3d212dc8128f,
+    0x80fa687f881c7f8e,0x7ce66634bc9d0b99,
+    0xa139029f6a239f72,0x1c1fffc1ebc44e80,
+    0xc987434744ac874e,0xa327ffb266b56220,
+    0xfbe9141915d7a922,0x4bf1ff9f0062baa8,
+    0x9d71ac8fada6c9b5,0x6f773fc3603db4a9,
+    0xc4ce17b399107c22,0xcb550fb4384d21d3,
+    0xf6019da07f549b2b,0x7e2a53a146606a48,
+    0x99c102844f94e0fb,0x2eda7444cbfc426d,
+    0xc0314325637a1939,0xfa911155fefb5308,
+    0xf03d93eebc589f88,0x793555ab7eba27ca,
+    0x96267c7535b763b5,0x4bc1558b2f3458de,
+    0xbbb01b9283253ca2,0x9eb1aaedfb016f16,
+    0xea9c227723ee8bcb,0x465e15a979c1cadc,
+    0x92a1958a7675175f,0xbfacd89ec191ec9,
+    0xb749faed14125d36,0xcef980ec671f667b,
+    0xe51c79a85916f484,0x82b7e12780e7401a,
+    0x8f31cc0937ae58d2,0xd1b2ecb8b0908810,
+    0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15,
+    0xdfbdcece67006ac9,0x67a791e093e1d49a,
+    0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0,
+    0xaecc49914078536d,0x58fae9f773886e18,
+    0xda7f5bf590966848,0xaf39a475506a899e,
+    0x888f99797a5e012d,0x6d8406c952429603,
+    0xaab37fd7d8f58178,0xc8e5087ba6d33b83,
+    0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64,
+    0x855c3be0a17fcd26,0x5cf2eea09a55067f,
+    0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e,
+    0xd0601d8efc57b08b,0xf13b94daf124da26,
+    0x823c12795db6ce57,0x76c53d08d6b70858,
+    0xa2cb1717b52481ed,0x54768c4b0c64ca6e,
+    0xcb7ddcdda26da268,0xa9942f5dcf7dfd09,
+    0xfe5d54150b090b02,0xd3f93b35435d7c4c,
+    0x9efa548d26e5a6e1,0xc47bc5014a1a6daf,
+    0xc6b8e9b0709f109a,0x359ab6419ca1091b,
+    0xf867241c8cc6d4c0,0xc30163d203c94b62,
+    0x9b407691d7fc44f8,0x79e0de63425dcf1d,
+    0xc21094364dfb5636,0x985915fc12f542e4,
+    0xf294b943e17a2bc4,0x3e6f5b7b17b2939d,
+    0x979cf3ca6cec5b5a,0xa705992ceecf9c42,
+    0xbd8430bd08277231,0x50c6ff782a838353,
+    0xece53cec4a314ebd,0xa4f8bf5635246428,
+    0x940f4613ae5ed136,0x871b7795e136be99,
+    0xb913179899f68584,0x28e2557b59846e3f,
+    0xe757dd7ec07426e5,0x331aeada2fe589cf,
+    0x9096ea6f3848984f,0x3ff0d2c85def7621,
+    0xb4bca50b065abe63,0xfed077a756b53a9,
+    0xe1ebce4dc7f16dfb,0xd3e8495912c62894,
+    0x8d3360f09cf6e4bd,0x64712dd7abbbd95c,
+    0xb080392cc4349dec,0xbd8d794d96aacfb3,
+    0xdca04777f541c567,0xecf0d7a0fc5583a0,
+    0x89e42caaf9491b60,0xf41686c49db57244,
+    0xac5d37d5b79b6239,0x311c2875c522ced5,
+    0xd77485cb25823ac7,0x7d633293366b828b,
+    0x86a8d39ef77164bc,0xae5dff9c02033197,
+    0xa8530886b54dbdeb,0xd9f57f830283fdfc,
+    0xd267caa862a12d66,0xd072df63c324fd7b,
+    0x8380dea93da4bc60,0x4247cb9e59f71e6d,
+    0xa46116538d0deb78,0x52d9be85f074e608,
+    0xcd795be870516656,0x67902e276c921f8b,
+    0x806bd9714632dff6,0xba1cd8a3db53b6,
+    0xa086cfcd97bf97f3,0x80e8a40eccd228a4,
+    0xc8a883c0fdaf7df0,0x6122cd128006b2cd,
+    0xfad2a4b13d1b5d6c,0x796b805720085f81,
+    0x9cc3a6eec6311a63,0xcbe3303674053bb0,
+    0xc3f490aa77bd60fc,0xbedbfc4411068a9c,
+    0xf4f1b4d515acb93b,0xee92fb5515482d44,
+    0x991711052d8bf3c5,0x751bdd152d4d1c4a,
+    0xbf5cd54678eef0b6,0xd262d45a78a0635d,
+    0xef340a98172aace4,0x86fb897116c87c34,
+    0x9580869f0e7aac0e,0xd45d35e6ae3d4da0,
+    0xbae0a846d2195712,0x8974836059cca109,
+    0xe998d258869facd7,0x2bd1a438703fc94b,
+    0x91ff83775423cc06,0x7b6306a34627ddcf,
+    0xb67f6455292cbf08,0x1a3bc84c17b1d542,
+    0xe41f3d6a7377eeca,0x20caba5f1d9e4a93,
+    0x8e938662882af53e,0x547eb47b7282ee9c,
+    0xb23867fb2a35b28d,0xe99e619a4f23aa43,
+    0xdec681f9f4c31f31,0x6405fa00e2ec94d4,
+    0x8b3c113c38f9f37e,0xde83bc408dd3dd04,
+    0xae0b158b4738705e,0x9624ab50b148d445,
+    0xd98ddaee19068c76,0x3badd624dd9b0957,
+    0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6,
+    0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c,
+    0xd47487cc8470652b,0x7647c3200069671f,
+    0x84c8d4dfd2c63f3b,0x29ecd9f40041e073,
+    0xa5fb0a17c777cf09,0xf468107100525890,
+    0xcf79cc9db955c2cc,0x7182148d4066eeb4,
+    0x81ac1fe293d599bf,0xc6f14cd848405530,
+    0xa21727db38cb002f,0xb8ada00e5a506a7c,
+    0xca9cf1d206fdc03b,0xa6d90811f0e4851c,
+    0xfd442e4688bd304a,0x908f4a166d1da663,
+    0x9e4a9cec15763e2e,0x9a598e4e043287fe,
+    0xc5dd44271ad3cdba,0x40eff1e1853f29fd,
+    0xf7549530e188c128,0xd12bee59e68ef47c,
+    0x9a94dd3e8cf578b9,0x82bb74f8301958ce,
+    0xc13a148e3032d6e7,0xe36a52363c1faf01,
+    0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1,
+    0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9,
+    0xbcb2b812db11a5de,0x7415d448f6b6f0e7,
+    0xebdf661791d60f56,0x111b495b3464ad21,
+    0x936b9fcebb25c995,0xcab10dd900beec34,
+    0xb84687c269ef3bfb,0x3d5d514f40eea742,
+    0xe65829b3046b0afa,0xcb4a5a3112a5112,
+    0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab,
+    0xb3f4e093db73a093,0x59ed216765690f56,
+    0xe0f218b8d25088b8,0x306869c13ec3532c,
+    0x8c974f7383725573,0x1e414218c73a13fb,
+    0xafbd2350644eeacf,0xe5d1929ef90898fa,
+    0xdbac6c247d62a583,0xdf45f746b74abf39,
+    0x894bc396ce5da772,0x6b8bba8c328eb783,
+    0xab9eb47c81f5114f,0x66ea92f3f326564,
+    0xd686619ba27255a2,0xc80a537b0efefebd,
+    0x8613fd0145877585,0xbd06742ce95f5f36,
+    0xa798fc4196e952e7,0x2c48113823b73704,
+    0xd17f3b51fca3a7a0,0xf75a15862ca504c5,
+    0x82ef85133de648c4,0x9a984d73dbe722fb,
+    0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba,
+    0xcc963fee10b7d1b3,0x318df905079926a8,
+    0xffbbcfe994e5c61f,0xfdf17746497f7052,
+    0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633,
+    0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0,
+    0xf9bd690a1b68637b,0x3dfdce7aa3c673b0,
+    0x9c1661a651213e2d,0x6bea10ca65c084e,
+    0xc31bfa0fe5698db8,0x486e494fcff30a62,
+    0xf3e2f893dec3f126,0x5a89dba3c3efccfa,
+    0x986ddb5c6b3a76b7,0xf89629465a75e01c,
+    0xbe89523386091465,0xf6bbb397f1135823,
+    0xee2ba6c0678b597f,0x746aa07ded582e2c,
+    0x94db483840b717ef,0xa8c2a44eb4571cdc,
+    0xba121a4650e4ddeb,0x92f34d62616ce413,
+    0xe896a0d7e51e1566,0x77b020baf9c81d17,
+    0x915e2486ef32cd60,0xace1474dc1d122e,
+    0xb5b5ada8aaff80b8,0xd819992132456ba,
+    0xe3231912d5bf60e6,0x10e1fff697ed6c69,
+    0x8df5efabc5979c8f,0xca8d3ffa1ef463c1,
+    0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2,
+    0xddd0467c64bce4a0,0xac7cb3f6d05ddbde,
+    0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b,
+    0xad4ab7112eb3929d,0x86c16c98d2c953c6,
+    0xd89d64d57a607744,0xe871c7bf077ba8b7,
+    0x87625f056c7c4a8b,0x11471cd764ad4972,
+    0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf,
+    0xd389b47879823479,0x4aff1d108d4ec2c3,
+    0x843610cb4bf160cb,0xcedf722a585139ba,
+    0xa54394fe1eedb8fe,0xc2974eb4ee658828,
+    0xce947a3da6a9273e,0x733d226229feea32,
+    0x811ccc668829b887,0x806357d5a3f525f,
+    0xa163ff802a3426a8,0xca07c2dcb0cf26f7,
+    0xc9bcff6034c13052,0xfc89b393dd02f0b5,
+    0xfc2c3f3841f17c67,0xbbac2078d443ace2,
+    0x9d9ba7832936edc0,0xd54b944b84aa4c0d,
+    0xc5029163f384a931,0xa9e795e65d4df11,
+    0xf64335bcf065d37d,0x4d4617b5ff4a16d5,
+    0x99ea0196163fa42e,0x504bced1bf8e4e45,
+    0xc06481fb9bcf8d39,0xe45ec2862f71e1d6,
+    0xf07da27a82c37088,0x5d767327bb4e5a4c,
+    0x964e858c91ba2655,0x3a6a07f8d510f86f,
+    0xbbe226efb628afea,0x890489f70a55368b,
+    0xeadab0aba3b2dbe5,0x2b45ac74ccea842e,
+    0x92c8ae6b464fc96f,0x3b0b8bc90012929d,
+    0xb77ada0617e3bbcb,0x9ce6ebb40173744,
+    0xe55990879ddcaabd,0xcc420a6a101d0515,
+    0x8f57fa54c2a9eab6,0x9fa946824a12232d,
+    0xb32df8e9f3546564,0x47939822dc96abf9,
+    0xdff9772470297ebd,0x59787e2b93bc56f7,
+    0x8bfbea76c619ef36,0x57eb4edb3c55b65a,
+    0xaefae51477a06b03,0xede622920b6b23f1,
+    0xdab99e59958885c4,0xe95fab368e45eced,
+    0x88b402f7fd75539b,0x11dbcb0218ebb414,
+    0xaae103b5fcd2a881,0xd652bdc29f26a119,
+    0xd59944a37c0752a2,0x4be76d3346f0495f,
+    0x857fcae62d8493a5,0x6f70a4400c562ddb,
+    0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952,
+    0xd097ad07a71f26b2,0x7e2000a41346a7a7,
+    0x825ecc24c873782f,0x8ed400668c0c28c8,
+    0xa2f67f2dfa90563b,0x728900802f0f32fa,
+    0xcbb41ef979346bca,0x4f2b40a03ad2ffb9,
+    0xfea126b7d78186bc,0xe2f610c84987bfa8,
+    0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9,
+    0xc6ede63fa05d3143,0x91503d1c79720dbb,
+    0xf8a95fcf88747d94,0x75a44c6397ce912a,
+    0x9b69dbe1b548ce7c,0xc986afbe3ee11aba,
+    0xc24452da229b021b,0xfbe85badce996168,
+    0xf2d56790ab41c2a2,0xfae27299423fb9c3,
+    0x97c560ba6b0919a5,0xdccd879fc967d41a,
+    0xbdb6b8e905cb600f,0x5400e987bbc1c920,
+    0xed246723473e3813,0x290123e9aab23b68,
+    0x9436c0760c86e30b,0xf9a0b6720aaf6521,
+    0xb94470938fa89bce,0xf808e40e8d5b3e69,
+    0xe7958cb87392c2c2,0xb60b1d1230b20e04,
+    0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2,
+    0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3,
+    0xe2280b6c20dd5232,0x25c6da63c38de1b0,
+    0x8d590723948a535f,0x579c487e5a38ad0e,
+    0xb0af48ec79ace837,0x2d835a9df0c6d851,
+    0xdcdb1b2798182244,0xf8e431456cf88e65,
+    0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff,
+    0xac8b2d36eed2dac5,0xe272467e3d222f3f,
+    0xd7adf884aa879177,0x5b0ed81dcc6abb0f,
+    0x86ccbb52ea94baea,0x98e947129fc2b4e9,
+    0xa87fea27a539e9a5,0x3f2398d747b36224,
+    0xd29fe4b18e88640e,0x8eec7f0d19a03aad,
+    0x83a3eeeef9153e89,0x1953cf68300424ac,
+    0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7,
+    0xcdb02555653131b6,0x3792f412cb06794d,
+    0x808e17555f3ebf11,0xe2bbd88bbee40bd0,
+    0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4,
+    0xc8de047564d20a8b,0xf245825a5a445275,
+    0xfb158592be068d2e,0xeed6e2f0f0d56712,
+    0x9ced737bb6c4183d,0x55464dd69685606b,
+    0xc428d05aa4751e4c,0xaa97e14c3c26b886,
+    0xf53304714d9265df,0xd53dd99f4b3066a8,
+    0x993fe2c6d07b7fab,0xe546a8038efe4029,
+    0xbf8fdb78849a5f96,0xde98520472bdd033,
+    0xef73d256a5c0f77c,0x963e66858f6d4440,
+    0x95a8637627989aad,0xdde7001379a44aa8,
+    0xbb127c53b17ec159,0x5560c018580d5d52,
+    0xe9d71b689dde71af,0xaab8f01e6e10b4a6,
+    0x9226712162ab070d,0xcab3961304ca70e8,
+    0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22,
+    0xe45c10c42a2b3b05,0x8cb89a7db77c506a,
+    0x8eb98a7a9a5b04e3,0x77f3608e92adb242,
+    0xb267ed1940f1c61c,0x55f038b237591ed3,
+    0xdf01e85f912e37a3,0x6b6c46dec52f6688,
+    0x8b61313bbabce2c6,0x2323ac4b3b3da015,
+    0xae397d8aa96c1b77,0xabec975e0a0d081a,
+    0xd9c7dced53c72255,0x96e7bd358c904a21,
+    0x881cea14545c7575,0x7e50d64177da2e54,
+    0xaa242499697392d2,0xdde50bd1d5d0b9e9,
+    0xd4ad2dbfc3d07787,0x955e4ec64b44e864,
+    0x84ec3c97da624ab4,0xbd5af13bef0b113e,
+    0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e,
+    0xcfb11ead453994ba,0x67de18eda5814af2,
+    0x81ceb32c4b43fcf4,0x80eacf948770ced7,
+    0xa2425ff75e14fc31,0xa1258379a94d028d,
+    0xcad2f7f5359a3b3e,0x96ee45813a04330,
+    0xfd87b5f28300ca0d,0x8bca9d6e188853fc,
+    0x9e74d1b791e07e48,0x775ea264cf55347e,
+    0xc612062576589dda,0x95364afe032a819e,
+    0xf79687aed3eec551,0x3a83ddbd83f52205,
+    0x9abe14cd44753b52,0xc4926a9672793543,
+    0xc16d9a0095928a27,0x75b7053c0f178294,
+    0xf1c90080baf72cb1,0x5324c68b12dd6339,
+    0x971da05074da7bee,0xd3f6fc16ebca5e04,
+    0xbce5086492111aea,0x88f4bb1ca6bcf585,
+    0xec1e4a7db69561a5,0x2b31e9e3d06c32e6,
+    0x9392ee8e921d5d07,0x3aff322e62439fd0,
+    0xb877aa3236a4b449,0x9befeb9fad487c3,
+    0xe69594bec44de15b,0x4c2ebe687989a9b4,
+    0x901d7cf73ab0acd9,0xf9d37014bf60a11,
+    0xb424dc35095cd80f,0x538484c19ef38c95,
+    0xe12e13424bb40e13,0x2865a5f206b06fba,
+    0x8cbccc096f5088cb,0xf93f87b7442e45d4,
+    0xafebff0bcb24aafe,0xf78f69a51539d749,
+    0xdbe6fecebdedd5be,0xb573440e5a884d1c,
+    0x89705f4136b4a597,0x31680a88f8953031,
+    0xabcc77118461cefc,0xfdc20d2b36ba7c3e,
+    0xd6bf94d5e57a42bc,0x3d32907604691b4d,
+    0x8637bd05af6c69b5,0xa63f9a49c2c1b110,
+    0xa7c5ac471b478423,0xfcf80dc33721d54,
+    0xd1b71758e219652b,0xd3c36113404ea4a9,
+    0x83126e978d4fdf3b,0x645a1cac083126ea,
+    0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4,
+    0xcccccccccccccccc,0xcccccccccccccccd,
+    0x8000000000000000,0x0,
+    0xa000000000000000,0x0,
+    0xc800000000000000,0x0,
+    0xfa00000000000000,0x0,
+    0x9c40000000000000,0x0,
+    0xc350000000000000,0x0,
+    0xf424000000000000,0x0,
+    0x9896800000000000,0x0,
+    0xbebc200000000000,0x0,
+    0xee6b280000000000,0x0,
+    0x9502f90000000000,0x0,
+    0xba43b74000000000,0x0,
+    0xe8d4a51000000000,0x0,
+    0x9184e72a00000000,0x0,
+    0xb5e620f480000000,0x0,
+    0xe35fa931a0000000,0x0,
+    0x8e1bc9bf04000000,0x0,
+    0xb1a2bc2ec5000000,0x0,
+    0xde0b6b3a76400000,0x0,
+    0x8ac7230489e80000,0x0,
+    0xad78ebc5ac620000,0x0,
+    0xd8d726b7177a8000,0x0,
+    0x878678326eac9000,0x0,
+    0xa968163f0a57b400,0x0,
+    0xd3c21bcecceda100,0x0,
+    0x84595161401484a0,0x0,
+    0xa56fa5b99019a5c8,0x0,
+    0xcecb8f27f4200f3a,0x0,
+    0x813f3978f8940984,0x4000000000000000,
+    0xa18f07d736b90be5,0x5000000000000000,
+    0xc9f2c9cd04674ede,0xa400000000000000,
+    0xfc6f7c4045812296,0x4d00000000000000,
+    0x9dc5ada82b70b59d,0xf020000000000000,
+    0xc5371912364ce305,0x6c28000000000000,
+    0xf684df56c3e01bc6,0xc732000000000000,
+    0x9a130b963a6c115c,0x3c7f400000000000,
+    0xc097ce7bc90715b3,0x4b9f100000000000,
+    0xf0bdc21abb48db20,0x1e86d40000000000,
+    0x96769950b50d88f4,0x1314448000000000,
+    0xbc143fa4e250eb31,0x17d955a000000000,
+    0xeb194f8e1ae525fd,0x5dcfab0800000000,
+    0x92efd1b8d0cf37be,0x5aa1cae500000000,
+    0xb7abc627050305ad,0xf14a3d9e40000000,
+    0xe596b7b0c643c719,0x6d9ccd05d0000000,
+    0x8f7e32ce7bea5c6f,0xe4820023a2000000,
+    0xb35dbf821ae4f38b,0xdda2802c8a800000,
+    0xe0352f62a19e306e,0xd50b2037ad200000,
+    0x8c213d9da502de45,0x4526f422cc340000,
+    0xaf298d050e4395d6,0x9670b12b7f410000,
+    0xdaf3f04651d47b4c,0x3c0cdd765f114000,
+    0x88d8762bf324cd0f,0xa5880a69fb6ac800,
+    0xab0e93b6efee0053,0x8eea0d047a457a00,
+    0xd5d238a4abe98068,0x72a4904598d6d880,
+    0x85a36366eb71f041,0x47a6da2b7f864750,
+    0xa70c3c40a64e6c51,0x999090b65f67d924,
+    0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d,
+    0x82818f1281ed449f,0xbff8f10e7a8921a4,
+    0xa321f2d7226895c7,0xaff72d52192b6a0d,
+    0xcbea6f8ceb02bb39,0x9bf4f8a69f764490,
+    0xfee50b7025c36a08,0x2f236d04753d5b4,
+    0x9f4f2726179a2245,0x1d762422c946590,
+    0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5,
+    0xf8ebad2b84e0d58b,0xd2e0898765a7deb2,
+    0x9b934c3b330c8577,0x63cc55f49f88eb2f,
+    0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb,
+    0xf316271c7fc3908a,0x8bef464e3945ef7a,
+    0x97edd871cfda3a56,0x97758bf0e3cbb5ac,
+    0xbde94e8e43d0c8ec,0x3d52eeed1cbea317,
+    0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd,
+    0x945e455f24fb1cf8,0x8fe8caa93e74ef6a,
+    0xb975d6b6ee39e436,0xb3e2fd538e122b44,
+    0xe7d34c64a9c85d44,0x60dbbca87196b616,
+    0x90e40fbeea1d3a4a,0xbc8955e946fe31cd,
+    0xb51d13aea4a488dd,0x6babab6398bdbe41,
+    0xe264589a4dcdab14,0xc696963c7eed2dd1,
+    0x8d7eb76070a08aec,0xfc1e1de5cf543ca2,
+    0xb0de65388cc8ada8,0x3b25a55f43294bcb,
+    0xdd15fe86affad912,0x49ef0eb713f39ebe,
+    0x8a2dbf142dfcc7ab,0x6e3569326c784337,
+    0xacb92ed9397bf996,0x49c2c37f07965404,
+    0xd7e77a8f87daf7fb,0xdc33745ec97be906,
+    0x86f0ac99b4e8dafd,0x69a028bb3ded71a3,
+    0xa8acd7c0222311bc,0xc40832ea0d68ce0c,
+    0xd2d80db02aabd62b,0xf50a3fa490c30190,
+    0x83c7088e1aab65db,0x792667c6da79e0fa,
+    0xa4b8cab1a1563f52,0x577001b891185938,
+    0xcde6fd5e09abcf26,0xed4c0226b55e6f86,
+    0x80b05e5ac60b6178,0x544f8158315b05b4,
+    0xa0dc75f1778e39d6,0x696361ae3db1c721,
+    0xc913936dd571c84c,0x3bc3a19cd1e38e9,
+    0xfb5878494ace3a5f,0x4ab48a04065c723,
+    0x9d174b2dcec0e47b,0x62eb0d64283f9c76,
+    0xc45d1df942711d9a,0x3ba5d0bd324f8394,
+    0xf5746577930d6500,0xca8f44ec7ee36479,
+    0x9968bf6abbe85f20,0x7e998b13cf4e1ecb,
+    0xbfc2ef456ae276e8,0x9e3fedd8c321a67e,
+    0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e,
+    0x95d04aee3b80ece5,0xbba1f1d158724a12,
+    0xbb445da9ca61281f,0x2a8a6e45ae8edc97,
+    0xea1575143cf97226,0xf52d09d71a3293bd,
+    0x924d692ca61be758,0x593c2626705f9c56,
+    0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c,
+    0xe498f455c38b997a,0xb6dfb9c0f956447,
+    0x8edf98b59a373fec,0x4724bd4189bd5eac,
+    0xb2977ee300c50fe7,0x58edec91ec2cb657,
+    0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed,
+    0x8b865b215899f46c,0xbd79e0d20082ee74,
+    0xae67f1e9aec07187,0xecd8590680a3aa11,
+    0xda01ee641a708de9,0xe80e6f4820cc9495,
+    0x884134fe908658b2,0x3109058d147fdcdd,
+    0xaa51823e34a7eede,0xbd4b46f0599fd415,
+    0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a,
+    0x850fadc09923329e,0x3e2cf6bc604ddb0,
+    0xa6539930bf6bff45,0x84db8346b786151c,
+    0xcfe87f7cef46ff16,0xe612641865679a63,
+    0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e,
+    0xa26da3999aef7749,0xe3be5e330f38f09d,
+    0xcb090c8001ab551c,0x5cadf5bfd3072cc5,
+    0xfdcb4fa002162a63,0x73d9732fc7c8f7f6,
+    0x9e9f11c4014dda7e,0x2867e7fddcdd9afa,
+    0xc646d63501a1511d,0xb281e1fd541501b8,
+    0xf7d88bc24209a565,0x1f225a7ca91a4226,
+    0x9ae757596946075f,0x3375788de9b06958,
+    0xc1a12d2fc3978937,0x52d6b1641c83ae,
+    0xf209787bb47d6b84,0xc0678c5dbd23a49a,
+    0x9745eb4d50ce6332,0xf840b7ba963646e0,
+    0xbd176620a501fbff,0xb650e5a93bc3d898,
+    0xec5d3fa8ce427aff,0xa3e51f138ab4cebe,
+    0x93ba47c980e98cdf,0xc66f336c36b10137,
+    0xb8a8d9bbe123f017,0xb80b0047445d4184,
+    0xe6d3102ad96cec1d,0xa60dc059157491e5,
+    0x9043ea1ac7e41392,0x87c89837ad68db2f,
+    0xb454e4a179dd1877,0x29babe4598c311fb,
+    0xe16a1dc9d8545e94,0xf4296dd6fef3d67a,
+    0x8ce2529e2734bb1d,0x1899e4a65f58660c,
+    0xb01ae745b101e9e4,0x5ec05dcff72e7f8f,
+    0xdc21a1171d42645d,0x76707543f4fa1f73,
+    0x899504ae72497eba,0x6a06494a791c53a8,
+    0xabfa45da0edbde69,0x487db9d17636892,
+    0xd6f8d7509292d603,0x45a9d2845d3c42b6,
+    0x865b86925b9bc5c2,0xb8a2392ba45a9b2,
+    0xa7f26836f282b732,0x8e6cac7768d7141e,
+    0xd1ef0244af2364ff,0x3207d795430cd926,
+    0x8335616aed761f1f,0x7f44e6bd49e807b8,
+    0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6,
+    0xcd036837130890a1,0x36dba887c37a8c0f,
+    0x802221226be55a64,0xc2494954da2c9789,
+    0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c,
+    0xc83553c5c8965d3d,0x6f92829494e5acc7,
+    0xfa42a8b73abbf48c,0xcb772339ba1f17f9,
+    0x9c69a97284b578d7,0xff2a760414536efb,
+    0xc38413cf25e2d70d,0xfef5138519684aba,
+    0xf46518c2ef5b8cd1,0x7eb258665fc25d69,
+    0x98bf2f79d5993802,0xef2f773ffbd97a61,
+    0xbeeefb584aff8603,0xaafb550ffacfd8fa,
+    0xeeaaba2e5dbf6784,0x95ba2a53f983cf38,
+    0x952ab45cfa97a0b2,0xdd945a747bf26183,
+    0xba756174393d88df,0x94f971119aeef9e4,
+    0xe912b9d1478ceb17,0x7a37cd5601aab85d,
+    0x91abb422ccb812ee,0xac62e055c10ab33a,
+    0xb616a12b7fe617aa,0x577b986b314d6009,
+    0xe39c49765fdf9d94,0xed5a7e85fda0b80b,
+    0x8e41ade9fbebc27d,0x14588f13be847307,
+    0xb1d219647ae6b31c,0x596eb2d8ae258fc8,
+    0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb,
+    0x8aec23d680043bee,0x25de7bb9480d5854,
+    0xada72ccc20054ae9,0xaf561aa79a10ae6a,
+    0xd910f7ff28069da4,0x1b2ba1518094da04,
+    0x87aa9aff79042286,0x90fb44d2f05d0842,
+    0xa99541bf57452b28,0x353a1607ac744a53,
+    0xd3fa922f2d1675f2,0x42889b8997915ce8,
+    0x847c9b5d7c2e09b7,0x69956135febada11,
+    0xa59bc234db398c25,0x43fab9837e699095,
+    0xcf02b2c21207ef2e,0x94f967e45e03f4bb,
+    0x8161afb94b44f57d,0x1d1be0eebac278f5,
+    0xa1ba1ba79e1632dc,0x6462d92a69731732,
+    0xca28a291859bbf93,0x7d7b8f7503cfdcfe,
+    0xfcb2cb35e702af78,0x5cda735244c3d43e,
+    0x9defbf01b061adab,0x3a0888136afa64a7,
+    0xc56baec21c7a1916,0x88aaa1845b8fdd0,
+    0xf6c69a72a3989f5b,0x8aad549e57273d45,
+    0x9a3c2087a63f6399,0x36ac54e2f678864b,
+    0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd,
+    0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5,
+    0x969eb7c47859e743,0x9f644ae5a4b1b325,
+    0xbc4665b596706114,0x873d5d9f0dde1fee,
+    0xeb57ff22fc0c7959,0xa90cb506d155a7ea,
+    0x9316ff75dd87cbd8,0x9a7f12442d588f2,
+    0xb7dcbf5354e9bece,0xc11ed6d538aeb2f,
+    0xe5d3ef282a242e81,0x8f1668c8a86da5fa,
+    0x8fa475791a569d10,0xf96e017d694487bc,
+    0xb38d92d760ec4455,0x37c981dcc395a9ac,
+    0xe070f78d3927556a,0x85bbe253f47b1417,
+    0x8c469ab843b89562,0x93956d7478ccec8e,
+    0xaf58416654a6babb,0x387ac8d1970027b2,
+    0xdb2e51bfe9d0696a,0x6997b05fcc0319e,
+    0x88fcf317f22241e2,0x441fece3bdf81f03,
+    0xab3c2fddeeaad25a,0xd527e81cad7626c3,
+    0xd60b3bd56a5586f1,0x8a71e223d8d3b074,
+    0x85c7056562757456,0xf6872d5667844e49,
+    0xa738c6bebb12d16c,0xb428f8ac016561db,
+    0xd106f86e69d785c7,0xe13336d701beba52,
+    0x82a45b450226b39c,0xecc0024661173473,
+    0xa34d721642b06084,0x27f002d7f95d0190,
+    0xcc20ce9bd35c78a5,0x31ec038df7b441f4,
+    0xff290242c83396ce,0x7e67047175a15271,
+    0x9f79a169bd203e41,0xf0062c6e984d386,
+    0xc75809c42c684dd1,0x52c07b78a3e60868,
+    0xf92e0c3537826145,0xa7709a56ccdf8a82,
+    0x9bbcc7a142b17ccb,0x88a66076400bb691,
+    0xc2abf989935ddbfe,0x6acff893d00ea435,
+    0xf356f7ebf83552fe,0x583f6b8c4124d43,
+    0x98165af37b2153de,0xc3727a337a8b704a,
+    0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c,
+    0xeda2ee1c7064130c,0x1162def06f79df73,
+    0x9485d4d1c63e8be7,0x8addcb5645ac2ba8,
+    0xb9a74a0637ce2ee1,0x6d953e2bd7173692,
+    0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437,
+    0x910ab1d4db9914a0,0x1d9c9892400a22a2,
+    0xb54d5e4a127f59c8,0x2503beb6d00cab4b,
+    0xe2a0b5dc971f303a,0x2e44ae64840fd61d,
+    0x8da471a9de737e24,0x5ceaecfed289e5d2,
+    0xb10d8e1456105dad,0x7425a83e872c5f47,
+    0xdd50f1996b947518,0xd12f124e28f77719,
+    0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f,
+    0xace73cbfdc0bfb7b,0x636cc64d1001550b,
+    0xd8210befd30efa5a,0x3c47f7e05401aa4e,
+    0x8714a775e3e95c78,0x65acfaec34810a71,
+    0xa8d9d1535ce3b396,0x7f1839a741a14d0d,
+    0xd31045a8341ca07c,0x1ede48111209a050,
+    0x83ea2b892091e44d,0x934aed0aab460432,
+    0xa4e4b66b68b65d60,0xf81da84d5617853f,
+    0xce1de40642e3f4b9,0x36251260ab9d668e,
+    0x80d2ae83e9ce78f3,0xc1d72b7c6b426019,
+    0xa1075a24e4421730,0xb24cf65b8612f81f,
+    0xc94930ae1d529cfc,0xdee033f26797b627,
+    0xfb9b7cd9a4a7443c,0x169840ef017da3b1,
+    0x9d412e0806e88aa5,0x8e1f289560ee864e,
+    0xc491798a08a2ad4e,0xf1a6f2bab92a27e2,
+    0xf5b5d7ec8acb58a2,0xae10af696774b1db,
+    0x9991a6f3d6bf1765,0xacca6da1e0a8ef29,
+    0xbff610b0cc6edd3f,0x17fd090a58d32af3,
+    0xeff394dcff8a948e,0xddfc4b4cef07f5b0,
+    0x95f83d0a1fb69cd9,0x4abdaf101564f98e,
+    0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1,
+    0xea53df5fd18d5513,0x84c86189216dc5ed,
+    0x92746b9be2f8552c,0x32fd3cf5b4e49bb4,
+    0xb7118682dbb66a77,0x3fbc8c33221dc2a1,
+    0xe4d5e82392a40515,0xfabaf3feaa5334a,
+    0x8f05b1163ba6832d,0x29cb4d87f2a7400e,
+    0xb2c71d5bca9023f8,0x743e20e9ef511012,
+    0xdf78e4b2bd342cf6,0x914da9246b255416,
+    0x8bab8eefb6409c1a,0x1ad089b6c2f7548e,
+    0xae9672aba3d0c320,0xa184ac2473b529b1,
+    0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e,
+    0x8865899617fb1871,0x7e2fa67c7a658892,
+    0xaa7eebfb9df9de8d,0xddbb901b98feeab7,
+    0xd51ea6fa85785631,0x552a74227f3ea565,
+    0x8533285c936b35de,0xd53a88958f87275f,
+    0xa67ff273b8460356,0x8a892abaf368f137,
+    0xd01fef10a657842c,0x2d2b7569b0432d85,
+    0x8213f56a67f6b29b,0x9c3b29620e29fc73,
+    0xa298f2c501f45f42,0x8349f3ba91b47b8f,
+    0xcb3f2f7642717713,0x241c70a936219a73,
+    0xfe0efb53d30dd4d7,0xed238cd383aa0110,
+    0x9ec95d1463e8a506,0xf4363804324a40aa,
+    0xc67bb4597ce2ce48,0xb143c6053edcd0d5,
+    0xf81aa16fdc1b81da,0xdd94b7868e94050a,
+    0x9b10a4e5e9913128,0xca7cf2b4191c8326,
+    0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0,
+    0xf24a01a73cf2dccf,0xbc633b39673c8cec,
+    0x976e41088617ca01,0xd5be0503e085d813,
+    0xbd49d14aa79dbc82,0x4b2d8644d8a74e18,
+    0xec9c459d51852ba2,0xddf8e7d60ed1219e,
+    0x93e1ab8252f33b45,0xcabb90e5c942b503,
+    0xb8da1662e7b00a17,0x3d6a751f3b936243,
+    0xe7109bfba19c0c9d,0xcc512670a783ad4,
+    0x906a617d450187e2,0x27fb2b80668b24c5,
+    0xb484f9dc9641e9da,0xb1f9f660802dedf6,
+    0xe1a63853bbd26451,0x5e7873f8a0396973,
+    0x8d07e33455637eb2,0xdb0b487b6423e1e8,
+    0xb049dc016abc5e5f,0x91ce1a9a3d2cda62,
+    0xdc5c5301c56b75f7,0x7641a140cc7810fb,
+    0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d,
+    0xac2820d9623bf429,0x546345fa9fbdcd44,
+    0xd732290fbacaf133,0xa97c177947ad4095,
+    0x867f59a9d4bed6c0,0x49ed8eabcccc485d,
+    0xa81f301449ee8c70,0x5c68f256bfff5a74,
+    0xd226fc195c6a2f8c,0x73832eec6fff3111,
+    0x83585d8fd9c25db7,0xc831fd53c5ff7eab,
+    0xa42e74f3d032f525,0xba3e7ca8b77f5e55,
+    0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb,
+    0x80444b5e7aa7cf85,0x7980d163cf5b81b3,
+    0xa0555e361951c366,0xd7e105bcc332621f,
+    0xc86ab5c39fa63440,0x8dd9472bf3fefaa7,
+    0xfa856334878fc150,0xb14f98f6f0feb951,
+    0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3,
+    0xc3b8358109e84f07,0xa862f80ec4700c8,
+    0xf4a642e14c6262c8,0xcd27bb612758c0fa,
+    0x98e7e9cccfbd7dbd,0x8038d51cb897789c,
+    0xbf21e44003acdd2c,0xe0470a63e6bd56c3,
+    0xeeea5d5004981478,0x1858ccfce06cac74,
+    0x95527a5202df0ccb,0xf37801e0c43ebc8,
+    0xbaa718e68396cffd,0xd30560258f54e6ba,
+    0xe950df20247c83fd,0x47c6b82ef32a2069,
+    0x91d28b7416cdd27e,0x4cdc331d57fa5441,
+    0xb6472e511c81471d,0xe0133fe4adf8e952,
+    0xe3d8f9e563a198e5,0x58180fddd97723a6,
+    0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,};
+};
+
+template <class unused>
+constexpr uint64_t powers_template<unused>::power_of_five_128[number_of_entries];
+
+using powers = powers_template<>;
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
+#define FASTFLOAT_DECIMAL_TO_BINARY_H
+
+#include <cfloat>
+#include <cinttypes>
+#include <cmath>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+
+namespace fast_float {
+
+// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating
+// the result, with the "high" part corresponding to the most significant bits and the
+// low part corresponding to the least significant bits.
+//
+template <int bit_precision>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+value128 compute_product_approximation(int64_t q, uint64_t w) {
+  const int index = 2 * int(q - powers::smallest_power_of_five);
+  // For small values of q, e.g., q in [0,27], the answer is always exact because
+  // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]);
+  // gives the exact answer.
+  value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]);
+  static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should  be in (0,64]");
+  constexpr uint64_t precision_mask = (bit_precision < 64) ?
+               (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
+               : uint64_t(0xFFFFFFFFFFFFFFFF);
+  if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with  (lower + w < lower)
+    // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed.
+    value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]);
+    firstproduct.low += secondproduct.high;
+    if(secondproduct.high > firstproduct.low) {
+      firstproduct.high++;
+    }
+  }
+  return firstproduct;
+}
+
+namespace detail {
+/**
+ * For q in (0,350), we have that
+ *  f = (((152170 + 65536) * q ) >> 16);
+ * is equal to
+ *   floor(p) + q
+ * where
+ *   p = log(5**q)/log(2) = q * log(5)/log(2)
+ *
+ * For negative values of q in (-400,0), we have that
+ *  f = (((152170 + 65536) * q ) >> 16);
+ * is equal to
+ *   -ceil(p) + q
+ * where
+ *   p = log(5**-q)/log(2) = -q * log(5)/log(2)
+ */
+  constexpr fastfloat_really_inline int32_t power(int32_t q)  noexcept  {
+    return (((152170 + 65536) * q) >> 16) + 63;
+  }
+} // namespace detail
+
+// create an adjusted mantissa, biased by the invalid power2
+// for significant digits already multiplied by 10 ** q.
+template <typename binary>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept  {
+  int hilz = int(w >> 63) ^ 1;
+  adjusted_mantissa answer;
+  answer.mantissa = w << hilz;
+  int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
+  answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias);
+  return answer;
+}
+
+// w * 10 ** q, without rounding the representation up.
+// the power2 in the exponent will be adjusted by invalid_am_bias.
+template <typename binary>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+adjusted_mantissa compute_error(int64_t q, uint64_t w)  noexcept  {
+  int lz = leading_zeroes(w);
+  w <<= lz;
+  value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
+  return compute_error_scaled<binary>(q, product.high, lz);
+}
+
+// w * 10 ** q
+// The returned value should be a valid ieee64 number that simply need to be packed.
+// However, in some very rare cases, the computation will fail. In such cases, we
+// return an adjusted_mantissa with a negative power of 2: the caller should recompute
+// in such cases.
+template <typename binary>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+adjusted_mantissa compute_float(int64_t q, uint64_t w)  noexcept  {
+  adjusted_mantissa answer;
+  if ((w == 0) || (q < binary::smallest_power_of_ten())) {
+    answer.power2 = 0;
+    answer.mantissa = 0;
+    // result should be zero
+    return answer;
+  }
+  if (q > binary::largest_power_of_ten()) {
+    // we want to get infinity:
+    answer.power2 = binary::infinite_power();
+    answer.mantissa = 0;
+    return answer;
+  }
+  // At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five].
+
+  // We want the most significant bit of i to be 1. Shift if needed.
+  int lz = leading_zeroes(w);
+  w <<= lz;
+
+  // The required precision is binary::mantissa_explicit_bits() + 3 because
+  // 1. We need the implicit bit
+  // 2. We need an extra bit for rounding purposes
+  // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift)
+
+  value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
+  // The computed 'product' is always sufficient.
+  // Mathematical proof:
+  // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to appear)
+  // See script/mushtak_lemire.py
+
+  // The "compute_product_approximation" function can be slightly slower than a branchless approach:
+  // value128 product = compute_product(q, w);
+  // but in practice, we can win big with the compute_product_approximation if its additional branch
+  // is easily predicted. Which is best is data specific.
+  int upperbit = int(product.high >> 63);
+
+  answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
+
+  answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent());
+  if (answer.power2 <= 0) { // we have a subnormal?
+    // Here have that answer.power2 <= 0 so -answer.power2 >= 0
+    if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure.
+      answer.power2 = 0;
+      answer.mantissa = 0;
+      // result should be zero
+      return answer;
+    }
+    // next line is safe because -answer.power2 + 1 < 64
+    answer.mantissa >>= -answer.power2 + 1;
+    // Thankfully, we can't have both "round-to-even" and subnormals because
+    // "round-to-even" only occurs for powers close to 0.
+    answer.mantissa += (answer.mantissa & 1); // round up
+    answer.mantissa >>= 1;
+    // There is a weird scenario where we don't have a subnormal but just.
+    // Suppose we start with 2.2250738585072013e-308, we end up
+    // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
+    // whereas 0x40000000000000 x 2^-1023-53  is normal. Now, we need to round
+    // up 0x3fffffffffffff x 2^-1023-53  and once we do, we are no longer
+    // subnormal, but we can only know this after rounding.
+    // So we only declare a subnormal if we are smaller than the threshold.
+    answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1;
+    return answer;
+  }
+
+  // usually, we round *up*, but if we fall right in between and and we have an
+  // even basis, we need to round down
+  // We are only concerned with the cases where 5**q fits in single 64-bit word.
+  if ((product.low <= 1) &&  (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) &&
+      ((answer.mantissa & 3) == 1) ) { // we may fall between two floats!
+    // To be in-between two floats we need that in doing
+    //   answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
+    // ... we dropped out only zeroes. But if this happened, then we can go back!!!
+    if((answer.mantissa  << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) ==  product.high) {
+      answer.mantissa &= ~uint64_t(1);          // flip it so that we do not round up
+    }
+  }
+
+  answer.mantissa += (answer.mantissa & 1); // round up
+  answer.mantissa >>= 1;
+  if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
+    answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
+    answer.power2++; // undo previous addition
+  }
+
+  answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
+  if (answer.power2 >= binary::infinite_power()) { // infinity
+    answer.power2 = binary::infinite_power();
+    answer.mantissa = 0;
+  }
+  return answer;
+}
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_BIGINT_H
+#define FASTFLOAT_BIGINT_H
+
+#include <algorithm>
+#include <cstdint>
+#include <climits>
+#include <cstring>
+
+
+namespace fast_float {
+
+// the limb width: we want efficient multiplication of double the bits in
+// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
+// extract the high and low parts efficiently. this is every 64-bit
+// architecture except for sparc, which emulates 128-bit multiplication.
+// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
+// doing `8 * sizeof(limb)`.
+#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
+#define FASTFLOAT_64BIT_LIMB 1
+typedef uint64_t limb;
+constexpr size_t limb_bits = 64;
+#else
+#define FASTFLOAT_32BIT_LIMB
+typedef uint32_t limb;
+constexpr size_t limb_bits = 32;
+#endif
+
+typedef span<limb> limb_span;
+
+// number of bits in a bigint. this needs to be at least the number
+// of bits required to store the largest bigint, which is
+// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
+// ~3600 bits, so we round to 4000.
+constexpr size_t bigint_bits = 4000;
+constexpr size_t bigint_limbs = bigint_bits / limb_bits;
+
+// vector-like type that is allocated on the stack. the entire
+// buffer is pre-allocated, and only the length changes.
+template <uint16_t size>
+struct stackvec {
+  limb data[size];
+  // we never need more than 150 limbs
+  uint16_t length{0};
+
+  stackvec() = default;
+  stackvec(const stackvec &) = delete;
+  stackvec &operator=(const stackvec &) = delete;
+  stackvec(stackvec &&) = delete;
+  stackvec &operator=(stackvec &&other) = delete;
+
+  // create stack vector from existing limb span.
+  FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) {
+    FASTFLOAT_ASSERT(try_extend(s));
+  }
+
+  FASTFLOAT_CONSTEXPR14 limb& operator[](size_t index) noexcept {
+    FASTFLOAT_DEBUG_ASSERT(index < length);
+    return data[index];
+  }
+  FASTFLOAT_CONSTEXPR14 const limb& operator[](size_t index) const noexcept {
+    FASTFLOAT_DEBUG_ASSERT(index < length);
+    return data[index];
+  }
+  // index from the end of the container
+  FASTFLOAT_CONSTEXPR14 const limb& rindex(size_t index) const noexcept {
+    FASTFLOAT_DEBUG_ASSERT(index < length);
+    size_t rindex = length - index - 1;
+    return data[rindex];
+  }
+
+  // set the length, without bounds checking.
+  FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept {
+    length = uint16_t(len);
+  }
+  constexpr size_t len() const noexcept {
+    return length;
+  }
+  constexpr bool is_empty() const noexcept {
+    return length == 0;
+  }
+  constexpr size_t capacity() const noexcept {
+    return size;
+  }
+  // append item to vector, without bounds checking
+  FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept {
+    data[length] = value;
+    length++;
+  }
+  // append item to vector, returning if item was added
+  FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept {
+    if (len() < capacity()) {
+      push_unchecked(value);
+      return true;
+    } else {
+      return false;
+    }
+  }
+  // add items to the vector, from a span, without bounds checking
+  FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept {
+    limb* ptr = data + length;
+    std::copy_n(s.ptr, s.len(), ptr);
+    set_len(len() + s.len());
+  }
+  // try to add items to the vector, returning if items were added
+  FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept {
+    if (len() + s.len() <= capacity()) {
+      extend_unchecked(s);
+      return true;
+    } else {
+      return false;
+    }
+  }
+  // resize the vector, without bounds checking
+  // if the new size is longer than the vector, assign value to each
+  // appended item.
+  FASTFLOAT_CONSTEXPR20
+  void resize_unchecked(size_t new_len, limb value) noexcept {
+    if (new_len > len()) {
+      size_t count = new_len - len();
+      limb* first = data + len();
+      limb* last = first + count;
+      ::std::fill(first, last, value);
+      set_len(new_len);
+    } else {
+      set_len(new_len);
+    }
+  }
+  // try to resize the vector, returning if the vector was resized.
+  FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept {
+    if (new_len > capacity()) {
+      return false;
+    } else {
+      resize_unchecked(new_len, value);
+      return true;
+    }
+  }
+  // check if any limbs are non-zero after the given index.
+  // this needs to be done in reverse order, since the index
+  // is relative to the most significant limbs.
+  FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept {
+    while (index < len()) {
+      if (rindex(index) != 0) {
+        return true;
+      }
+      index++;
+    }
+    return false;
+  }
+  // normalize the big integer, so most-significant zero limbs are removed.
+  FASTFLOAT_CONSTEXPR14 void normalize() noexcept {
+    while (len() > 0 && rindex(0) == 0) {
+      length--;
+    }
+  }
+};
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+uint64_t empty_hi64(bool& truncated) noexcept {
+  truncated = false;
+  return 0;
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+uint64_t uint64_hi64(uint64_t r0, bool& truncated) noexcept {
+  truncated = false;
+  int shl = leading_zeroes(r0);
+  return r0 << shl;
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept {
+  int shl = leading_zeroes(r0);
+  if (shl == 0) {
+    truncated = r1 != 0;
+    return r0;
+  } else {
+    int shr = 64 - shl;
+    truncated = (r1 << shl) != 0;
+    return (r0 << shl) | (r1 >> shr);
+  }
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+uint64_t uint32_hi64(uint32_t r0, bool& truncated) noexcept {
+  return uint64_hi64(r0, truncated);
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+uint64_t uint32_hi64(uint32_t r0, uint32_t r1, bool& truncated) noexcept {
+  uint64_t x0 = r0;
+  uint64_t x1 = r1;
+  return uint64_hi64((x0 << 32) | x1, truncated);
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noexcept {
+  uint64_t x0 = r0;
+  uint64_t x1 = r1;
+  uint64_t x2 = r2;
+  return uint64_hi64(x0, (x1 << 32) | x2, truncated);
+}
+
+// add two small integers, checking for overflow.
+// we want an efficient operation. for msvc, where
+// we don't have built-in intrinsics, this is still
+// pretty fast.
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+limb scalar_add(limb x, limb y, bool& overflow) noexcept {
+  limb z;
+// gcc and clang
+#if defined(__has_builtin)
+  #if __has_builtin(__builtin_add_overflow)
+    if (!cpp20_and_in_constexpr()) {
+      overflow = __builtin_add_overflow(x, y, &z);
+      return z;
+    }
+  #endif
+#endif
+
+  // generic, this still optimizes correctly on MSVC.
+  z = x + y;
+  overflow = z < x;
+  return z;
+}
+
+// multiply two small integers, getting both the high and low bits.
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+limb scalar_mul(limb x, limb y, limb& carry) noexcept {
+#ifdef FASTFLOAT_64BIT_LIMB
+  #if defined(__SIZEOF_INT128__)
+  // GCC and clang both define it as an extension.
+  __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
+  carry = limb(z >> limb_bits);
+  return limb(z);
+  #else
+  // fallback, no native 128-bit integer multiplication with carry.
+  // on msvc, this optimizes identically, somehow.
+  value128 z = full_multiplication(x, y);
+  bool overflow;
+  z.low = scalar_add(z.low, carry, overflow);
+  z.high += uint64_t(overflow);  // cannot overflow
+  carry = z.high;
+  return z.low;
+  #endif
+#else
+  uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
+  carry = limb(z >> limb_bits);
+  return limb(z);
+#endif
+}
+
+// add scalar value to bigint starting from offset.
+// used in grade school multiplication
+template <uint16_t size>
+inline FASTFLOAT_CONSTEXPR20
+bool small_add_from(stackvec<size>& vec, limb y, size_t start) noexcept {
+  size_t index = start;
+  limb carry = y;
+  bool overflow;
+  while (carry != 0 && index < vec.len()) {
+    vec[index] = scalar_add(vec[index], carry, overflow);
+    carry = limb(overflow);
+    index += 1;
+  }
+  if (carry != 0) {
+    FASTFLOAT_TRY(vec.try_push(carry));
+  }
+  return true;
+}
+
+// add scalar value to bigint.
+template <uint16_t size>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+bool small_add(stackvec<size>& vec, limb y) noexcept {
+  return small_add_from(vec, y, 0);
+}
+
+// multiply bigint by scalar value.
+template <uint16_t size>
+inline FASTFLOAT_CONSTEXPR20
+bool small_mul(stackvec<size>& vec, limb y) noexcept {
+  limb carry = 0;
+  for (size_t index = 0; index < vec.len(); index++) {
+    vec[index] = scalar_mul(vec[index], y, carry);
+  }
+  if (carry != 0) {
+    FASTFLOAT_TRY(vec.try_push(carry));
+  }
+  return true;
+}
+
+// add bigint to bigint starting from index.
+// used in grade school multiplication
+template <uint16_t size>
+FASTFLOAT_CONSTEXPR20
+bool large_add_from(stackvec<size>& x, limb_span y, size_t start) noexcept {
+  // the effective x buffer is from `xstart..x.len()`, so exit early
+  // if we can't get that current range.
+  if (x.len() < start || y.len() > x.len() - start) {
+      FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
+  }
+
+  bool carry = false;
+  for (size_t index = 0; index < y.len(); index++) {
+    limb xi = x[index + start];
+    limb yi = y[index];
+    bool c1 = false;
+    bool c2 = false;
+    xi = scalar_add(xi, yi, c1);
+    if (carry) {
+      xi = scalar_add(xi, 1, c2);
+    }
+    x[index + start] = xi;
+    carry = c1 | c2;
+  }
+
+  // handle overflow
+  if (carry) {
+    FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
+  }
+  return true;
+}
+
+// add bigint to bigint.
+template <uint16_t size>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+bool large_add_from(stackvec<size>& x, limb_span y) noexcept {
+  return large_add_from(x, y, 0);
+}
+
+// grade-school multiplication algorithm
+template <uint16_t size>
+FASTFLOAT_CONSTEXPR20
+bool long_mul(stackvec<size>& x, limb_span y) noexcept {
+  limb_span xs = limb_span(x.data, x.len());
+  stackvec<size> z(xs);
+  limb_span zs = limb_span(z.data, z.len());
+
+  if (y.len() != 0) {
+    limb y0 = y[0];
+    FASTFLOAT_TRY(small_mul(x, y0));
+    for (size_t index = 1; index < y.len(); index++) {
+      limb yi = y[index];
+      stackvec<size> zi;
+      if (yi != 0) {
+        // re-use the same buffer throughout
+        zi.set_len(0);
+        FASTFLOAT_TRY(zi.try_extend(zs));
+        FASTFLOAT_TRY(small_mul(zi, yi));
+        limb_span zis = limb_span(zi.data, zi.len());
+        FASTFLOAT_TRY(large_add_from(x, zis, index));
+      }
+    }
+  }
+
+  x.normalize();
+  return true;
+}
+
+// grade-school multiplication algorithm
+template <uint16_t size>
+FASTFLOAT_CONSTEXPR20
+bool large_mul(stackvec<size>& x, limb_span y) noexcept {
+  if (y.len() == 1) {
+    FASTFLOAT_TRY(small_mul(x, y[0]));
+  } else {
+    FASTFLOAT_TRY(long_mul(x, y));
+  }
+  return true;
+}
+
+template <typename = void>
+struct pow5_tables {
+  static constexpr uint32_t large_step = 135;
+  static constexpr uint64_t small_power_of_5[] = {
+    1UL, 5UL, 25UL, 125UL, 625UL, 3125UL, 15625UL, 78125UL, 390625UL,
+    1953125UL, 9765625UL, 48828125UL, 244140625UL, 1220703125UL,
+    6103515625UL, 30517578125UL, 152587890625UL, 762939453125UL,
+    3814697265625UL, 19073486328125UL, 95367431640625UL, 476837158203125UL,
+    2384185791015625UL, 11920928955078125UL, 59604644775390625UL,
+    298023223876953125UL, 1490116119384765625UL, 7450580596923828125UL,
+  };
+#ifdef FASTFLOAT_64BIT_LIMB
+  constexpr static limb large_power_of_5[] = {
+    1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
+    10482974169319127550UL, 198276706040285095UL};
+#else
+  constexpr static limb large_power_of_5[] = {
+    4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
+    1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
+#endif
+};
+
+template <typename T>
+constexpr uint32_t pow5_tables<T>::large_step;
+
+template <typename T>
+constexpr uint64_t pow5_tables<T>::small_power_of_5[];
+
+template <typename T>
+constexpr limb pow5_tables<T>::large_power_of_5[];
+
+// big integer type. implements a small subset of big integer
+// arithmetic, using simple algorithms since asymptotically
+// faster algorithms are slower for a small number of limbs.
+// all operations assume the big-integer is normalized.
+struct bigint : pow5_tables<> {
+  // storage of the limbs, in little-endian order.
+  stackvec<bigint_limbs> vec;
+
+  FASTFLOAT_CONSTEXPR20 bigint(): vec() {}
+  bigint(const bigint &) = delete;
+  bigint &operator=(const bigint &) = delete;
+  bigint(bigint &&) = delete;
+  bigint &operator=(bigint &&other) = delete;
+
+  FASTFLOAT_CONSTEXPR20 bigint(uint64_t value): vec() {
+#ifdef FASTFLOAT_64BIT_LIMB
+    vec.push_unchecked(value);
+#else
+    vec.push_unchecked(uint32_t(value));
+    vec.push_unchecked(uint32_t(value >> 32));
+#endif
+    vec.normalize();
+  }
+
+  // get the high 64 bits from the vector, and if bits were truncated.
+  // this is to get the significant digits for the float.
+  FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool& truncated) const noexcept {
+#ifdef FASTFLOAT_64BIT_LIMB
+    if (vec.len() == 0) {
+      return empty_hi64(truncated);
+    } else if (vec.len() == 1) {
+      return uint64_hi64(vec.rindex(0), truncated);
+    } else {
+      uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
+      truncated |= vec.nonzero(2);
+      return result;
+    }
+#else
+    if (vec.len() == 0) {
+      return empty_hi64(truncated);
+    } else if (vec.len() == 1) {
+      return uint32_hi64(vec.rindex(0), truncated);
+    } else if (vec.len() == 2) {
+      return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
+    } else {
+      uint64_t result = uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
+      truncated |= vec.nonzero(3);
+      return result;
+    }
+#endif
+  }
+
+  // compare two big integers, returning the large value.
+  // assumes both are normalized. if the return value is
+  // negative, other is larger, if the return value is
+  // positive, this is larger, otherwise they are equal.
+  // the limbs are stored in little-endian order, so we
+  // must compare the limbs in ever order.
+  FASTFLOAT_CONSTEXPR20 int compare(const bigint& other) const noexcept {
+    if (vec.len() > other.vec.len()) {
+      return 1;
+    } else if (vec.len() < other.vec.len()) {
+      return -1;
+    } else {
+      for (size_t index = vec.len(); index > 0; index--) {
+        limb xi = vec[index - 1];
+        limb yi = other.vec[index - 1];
+        if (xi > yi) {
+          return 1;
+        } else if (xi < yi) {
+          return -1;
+        }
+      }
+      return 0;
+    }
+  }
+
+  // shift left each limb n bits, carrying over to the new limb
+  // returns true if we were able to shift all the digits.
+  FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept {
+    // Internally, for each item, we shift left by n, and add the previous
+    // right shifted limb-bits.
+    // For example, we transform (for u8) shifted left 2, to:
+    //      b10100100 b01000010
+    //      b10 b10010001 b00001000
+    FASTFLOAT_DEBUG_ASSERT(n != 0);
+    FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);
+
+    size_t shl = n;
+    size_t shr = limb_bits - shl;
+    limb prev = 0;
+    for (size_t index = 0; index < vec.len(); index++) {
+      limb xi = vec[index];
+      vec[index] = (xi << shl) | (prev >> shr);
+      prev = xi;
+    }
+
+    limb carry = prev >> shr;
+    if (carry != 0) {
+      return vec.try_push(carry);
+    }
+    return true;
+  }
+
+  // move the limbs left by `n` limbs.
+  FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept {
+    FASTFLOAT_DEBUG_ASSERT(n != 0);
+    if (n + vec.len() > vec.capacity()) {
+      return false;
+    } else if (!vec.is_empty()) {
+      // move limbs
+      limb* dst = vec.data + n;
+      const limb* src = vec.data;
+      std::copy_backward(src, src + vec.len(), dst + vec.len());
+      // fill in empty limbs
+      limb* first = vec.data;
+      limb* last = first + n;
+      ::std::fill(first, last, 0);
+      vec.set_len(n + vec.len());
+      return true;
+    } else {
+      return true;
+    }
+  }
+
+  // move the limbs left by `n` bits.
+  FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept {
+    size_t rem = n % limb_bits;
+    size_t div = n / limb_bits;
+    if (rem != 0) {
+      FASTFLOAT_TRY(shl_bits(rem));
+    }
+    if (div != 0) {
+      FASTFLOAT_TRY(shl_limbs(div));
+    }
+    return true;
+  }
+
+  // get the number of leading zeros in the bigint.
+  FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept {
+    if (vec.is_empty()) {
+      return 0;
+    } else {
+#ifdef FASTFLOAT_64BIT_LIMB
+      return leading_zeroes(vec.rindex(0));
+#else
+      // no use defining a specialized leading_zeroes for a 32-bit type.
+      uint64_t r0 = vec.rindex(0);
+      return leading_zeroes(r0 << 32);
+#endif
+    }
+  }
+
+  // get the number of bits in the bigint.
+  FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept {
+    int lz = ctlz();
+    return int(limb_bits * vec.len()) - lz;
+  }
+
+  FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept {
+    return small_mul(vec, y);
+  }
+
+  FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept {
+    return small_add(vec, y);
+  }
+
+  // multiply as if by 2 raised to a power.
+  FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept {
+    return shl(exp);
+  }
+
+  // multiply as if by 5 raised to a power.
+  FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept {
+    // multiply by a power of 5
+    size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
+    limb_span large = limb_span(large_power_of_5, large_length);
+    while (exp >= large_step) {
+      FASTFLOAT_TRY(large_mul(vec, large));
+      exp -= large_step;
+    }
+#ifdef FASTFLOAT_64BIT_LIMB
+    uint32_t small_step = 27;
+    limb max_native = 7450580596923828125UL;
+#else
+    uint32_t small_step = 13;
+    limb max_native = 1220703125U;
+#endif
+    while (exp >= small_step) {
+      FASTFLOAT_TRY(small_mul(vec, max_native));
+      exp -= small_step;
+    }
+    if (exp != 0) {
+      // Work around clang bug https://godbolt.org/z/zedh7rrhc
+      // This is similar to https://github.com/llvm/llvm-project/issues/47746,
+      // except the workaround described there don't work here
+      FASTFLOAT_TRY(
+        small_mul(vec, limb(((void)small_power_of_5[0], small_power_of_5[exp])))
+      );
+    }
+
+    return true;
+  }
+
+  // multiply as if by 10 raised to a power.
+  FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept {
+    FASTFLOAT_TRY(pow5(exp));
+    return pow2(exp);
+  }
+};
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_DIGIT_COMPARISON_H
+#define FASTFLOAT_DIGIT_COMPARISON_H
+
+#include <algorithm>
+#include <cstdint>
+#include <cstring>
+#include <iterator>
+
+
+namespace fast_float {
+
+// 1e0 to 1e19
+constexpr static uint64_t powers_of_ten_uint64[] = {
+    1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
+    1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
+    100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
+    1000000000000000000UL, 10000000000000000000UL};
+
+// calculate the exponent, in scientific notation, of the number.
+// this algorithm is not even close to optimized, but it has no practical
+// effect on performance: in order to have a faster algorithm, we'd need
+// to slow down performance for faster algorithms, and this is still fast.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+int32_t scientific_exponent(parsed_number_string_t<UC> & num) noexcept {
+  uint64_t mantissa = num.mantissa;
+  int32_t exponent = int32_t(num.exponent);
+  while (mantissa >= 10000) {
+    mantissa /= 10000;
+    exponent += 4;
+  }
+  while (mantissa >= 100) {
+    mantissa /= 100;
+    exponent += 2;
+  }
+  while (mantissa >= 10) {
+    mantissa /= 10;
+    exponent += 1;
+  }
+  return exponent;
+}
+
+// this converts a native floating-point number to an extended-precision float.
+template <typename T>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+adjusted_mantissa to_extended(T value) noexcept {
+  using equiv_uint = typename binary_format<T>::equiv_uint;
+  constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
+  constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
+  constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
+
+  adjusted_mantissa am;
+  int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
+  equiv_uint bits;
+#if FASTFLOAT_HAS_BIT_CAST
+  bits = std::bit_cast<equiv_uint>(value);
+#else
+  ::memcpy(&bits, &value, sizeof(T));
+#endif
+  if ((bits & exponent_mask) == 0) {
+    // denormal
+    am.power2 = 1 - bias;
+    am.mantissa = bits & mantissa_mask;
+  } else {
+    // normal
+    am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
+    am.power2 -= bias;
+    am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
+  }
+
+  return am;
+}
+
+// get the extended precision value of the halfway point between b and b+u.
+// we are given a native float that represents b, so we need to adjust it
+// halfway between b and b+u.
+template <typename T>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+adjusted_mantissa to_extended_halfway(T value) noexcept {
+  adjusted_mantissa am = to_extended(value);
+  am.mantissa <<= 1;
+  am.mantissa += 1;
+  am.power2 -= 1;
+  return am;
+}
+
+// round an extended-precision float to the nearest machine float.
+template <typename T, typename callback>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+void round(adjusted_mantissa& am, callback cb) noexcept {
+  int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
+  if (-am.power2 >= mantissa_shift) {
+    // have a denormal float
+    int32_t shift = -am.power2 + 1;
+    cb(am, std::min<int32_t>(shift, 64));
+    // check for round-up: if rounding-nearest carried us to the hidden bit.
+    am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1;
+    return;
+  }
+
+  // have a normal float, use the default shift.
+  cb(am, mantissa_shift);
+
+  // check for carry
+  if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
+    am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
+    am.power2++;
+  }
+
+  // check for infinite: we could have carried to an infinite power
+  am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
+  if (am.power2 >= binary_format<T>::infinite_power()) {
+    am.power2 = binary_format<T>::infinite_power();
+    am.mantissa = 0;
+  }
+}
+
+template <typename callback>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept {
+  const uint64_t mask
+  = (shift == 64)
+    ? UINT64_MAX
+    : (uint64_t(1) << shift) - 1;
+  const uint64_t halfway
+  = (shift == 0)
+    ? 0
+    : uint64_t(1) << (shift - 1);
+  uint64_t truncated_bits = am.mantissa & mask;
+  bool is_above = truncated_bits > halfway;
+  bool is_halfway = truncated_bits == halfway;
+
+  // shift digits into position
+  if (shift == 64) {
+    am.mantissa = 0;
+  } else {
+    am.mantissa >>= shift;
+  }
+  am.power2 += shift;
+
+  bool is_odd = (am.mantissa & 1) == 1;
+  am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
+  if (shift == 64) {
+    am.mantissa = 0;
+  } else {
+    am.mantissa >>= shift;
+  }
+  am.power2 += shift;
+}
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+void skip_zeros(UC const * & first, UC const * last) noexcept {
+  uint64_t val;
+  while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
+    ::memcpy(&val, first, sizeof(uint64_t));
+    if (val != int_cmp_zeros<UC>()) {
+      break;
+    }
+    first += int_cmp_len<UC>();
+  }
+  while (first != last) {
+    if (*first != UC('0')) {
+      break;
+    }
+    first++;
+  }
+}
+
+// determine if any non-zero digits were truncated.
+// all characters must be valid digits.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+bool is_truncated(UC const * first, UC const * last) noexcept {
+  // do 8-bit optimizations, can just compare to 8 literal 0s.
+  uint64_t val;
+  while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
+    ::memcpy(&val, first, sizeof(uint64_t));
+    if (val != int_cmp_zeros<UC>()) {
+      return true;
+    }
+    first += int_cmp_len<UC>();
+  }
+  while (first != last) {
+    if (*first != UC('0')) {
+      return true;
+    }
+    ++first;
+  }
+  return false;
+}
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+bool is_truncated(span<const UC> s) noexcept {
+  return is_truncated(s.ptr, s.ptr + s.len());
+}
+
+
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+void parse_eight_digits(const UC*& p, limb& value, size_t& counter, size_t& count) noexcept {
+  value = value * 100000000 + parse_eight_digits_unrolled(p);
+  p += 8;
+  counter += 8;
+  count += 8;
+}
+
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14
+void parse_one_digit(UC const *& p, limb& value, size_t& counter, size_t& count) noexcept {
+  value = value * 10 + limb(*p - UC('0'));
+  p++;
+  counter++;
+  count++;
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+void add_native(bigint& big, limb power, limb value) noexcept {
+  big.mul(power);
+  big.add(value);
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20
+void round_up_bigint(bigint& big, size_t& count) noexcept {
+  // need to round-up the digits, but need to avoid rounding
+  // ....9999 to ...10000, which could cause a false halfway point.
+  add_native(big, 10, 1);
+  count++;
+}
+
+// parse the significant digits into a big integer
+template <typename UC>
+inline FASTFLOAT_CONSTEXPR20
+void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_digits, size_t& digits) noexcept {
+  // try to minimize the number of big integer and scalar multiplication.
+  // therefore, try to parse 8 digits at a time, and multiply by the largest
+  // scalar value (9 or 19 digits) for each step.
+  size_t counter = 0;
+  digits = 0;
+  limb value = 0;
+#ifdef FASTFLOAT_64BIT_LIMB
+  size_t step = 19;
+#else
+  size_t step = 9;
+#endif
+
+  // process all integer digits.
+  UC const * p = num.integer.ptr;
+  UC const * pend = p + num.integer.len();
+  skip_zeros(p, pend);
+  // process all digits, in increments of step per loop
+  while (p != pend) {
+    while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
+      parse_eight_digits(p, value, counter, digits);
+    }
+    while (counter < step && p != pend && digits < max_digits) {
+      parse_one_digit(p, value, counter, digits);
+    }
+    if (digits == max_digits) {
+      // add the temporary value, then check if we've truncated any digits
+      add_native(result, limb(powers_of_ten_uint64[counter]), value);
+      bool truncated = is_truncated(p, pend);
+      if (num.fraction.ptr != nullptr) {
+        truncated |= is_truncated(num.fraction);
+      }
+      if (truncated) {
+        round_up_bigint(result, digits);
+      }
+      return;
+    } else {
+      add_native(result, limb(powers_of_ten_uint64[counter]), value);
+      counter = 0;
+      value = 0;
+    }
+  }
+
+  // add our fraction digits, if they're available.
+  if (num.fraction.ptr != nullptr) {
+    p = num.fraction.ptr;
+    pend = p + num.fraction.len();
+    if (digits == 0) {
+      skip_zeros(p, pend);
+    }
+    // process all digits, in increments of step per loop
+    while (p != pend) {
+      while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
+        parse_eight_digits(p, value, counter, digits);
+      }
+      while (counter < step && p != pend && digits < max_digits) {
+        parse_one_digit(p, value, counter, digits);
+      }
+      if (digits == max_digits) {
+        // add the temporary value, then check if we've truncated any digits
+        add_native(result, limb(powers_of_ten_uint64[counter]), value);
+        bool truncated = is_truncated(p, pend);
+        if (truncated) {
+          round_up_bigint(result, digits);
+        }
+        return;
+      } else {
+        add_native(result, limb(powers_of_ten_uint64[counter]), value);
+        counter = 0;
+        value = 0;
+      }
+    }
+  }
+
+  if (counter != 0) {
+    add_native(result, limb(powers_of_ten_uint64[counter]), value);
+  }
+}
+
+template <typename T>
+inline FASTFLOAT_CONSTEXPR20
+adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept {
+  FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
+  adjusted_mantissa answer;
+  bool truncated;
+  answer.mantissa = bigmant.hi64(truncated);
+  int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
+  answer.power2 = bigmant.bit_length() - 64 + bias;
+
+  round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) {
+    round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
+      return is_above || (is_halfway && truncated) || (is_odd && is_halfway);
+    });
+  });
+
+  return answer;
+}
+
+// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
+// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
+// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
+// we then need to scale by `2^(f- e)`, and then the two significant digits
+// are of the same magnitude.
+template <typename T>
+inline FASTFLOAT_CONSTEXPR20
+adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
+  bigint& real_digits = bigmant;
+  int32_t real_exp = exponent;
+
+  // get the value of `b`, rounded down, and get a bigint representation of b+h
+  adjusted_mantissa am_b = am;
+  // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type.
+  round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); });
+  T b;
+  to_float(false, am_b, b);
+  adjusted_mantissa theor = to_extended_halfway(b);
+  bigint theor_digits(theor.mantissa);
+  int32_t theor_exp = theor.power2;
+
+  // scale real digits and theor digits to be same power.
+  int32_t pow2_exp = theor_exp - real_exp;
+  uint32_t pow5_exp = uint32_t(-real_exp);
+  if (pow5_exp != 0) {
+    FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
+  }
+  if (pow2_exp > 0) {
+    FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
+  } else if (pow2_exp < 0) {
+    FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
+  }
+
+  // compare digits, and use it to director rounding
+  int ord = real_digits.compare(theor_digits);
+  adjusted_mantissa answer = am;
+  round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) {
+    round_nearest_tie_even(a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
+      (void)_;  // not needed, since we've done our comparison
+      (void)__; // not needed, since we've done our comparison
+      if (ord > 0) {
+        return true;
+      } else if (ord < 0) {
+        return false;
+      } else {
+        return is_odd;
+      }
+    });
+  });
+
+  return answer;
+}
+
+// parse the significant digits as a big integer to unambiguously round the
+// the significant digits. here, we are trying to determine how to round
+// an extended float representation close to `b+h`, halfway between `b`
+// (the float rounded-down) and `b+u`, the next positive float. this
+// algorithm is always correct, and uses one of two approaches. when
+// the exponent is positive relative to the significant digits (such as
+// 1234), we create a big-integer representation, get the high 64-bits,
+// determine if any lower bits are truncated, and use that to direct
+// rounding. in case of a negative exponent relative to the significant
+// digits (such as 1.2345), we create a theoretical representation of
+// `b` as a big-integer type, scaled to the same binary exponent as
+// the actual digits. we then compare the big integer representations
+// of both, and use that to direct rounding.
+template <typename T, typename UC>
+inline FASTFLOAT_CONSTEXPR20
+adjusted_mantissa digit_comp(parsed_number_string_t<UC>& num, adjusted_mantissa am) noexcept {
+  // remove the invalid exponent bias
+  am.power2 -= invalid_am_bias;
+
+  int32_t sci_exp = scientific_exponent(num);
+  size_t max_digits = binary_format<T>::max_digits();
+  size_t digits = 0;
+  bigint bigmant;
+  parse_mantissa(bigmant, num, max_digits, digits);
+  // can't underflow, since digits is at most max_digits.
+  int32_t exponent = sci_exp + 1 - int32_t(digits);
+  if (exponent >= 0) {
+    return positive_digit_comp<T>(bigmant, exponent);
+  } else {
+    return negative_digit_comp<T>(bigmant, am, exponent);
+  }
+}
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_PARSE_NUMBER_H
+#define FASTFLOAT_PARSE_NUMBER_H
+
+
+#include <cmath>
+#include <cstring>
+#include <limits>
+#include <system_error>
+
+namespace fast_float {
+
+
+namespace detail {
+/**
+ * Special case +inf, -inf, nan, infinity, -infinity.
+ * The case comparisons could be made much faster given that we know that the
+ * strings a null-free and fixed.
+ **/
+template <typename T, typename UC>
+from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14
+parse_infnan(UC const * first, UC const * last, T &value)  noexcept  {
+  from_chars_result_t<UC> answer{};
+  answer.ptr = first;
+  answer.ec = std::errc(); // be optimistic
+  bool minusSign = false;
+  if (*first == UC('-')) { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
+      minusSign = true;
+      ++first;
+  }
+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
+  if (*first == UC('+')) {
+      ++first;
+  }
+#endif
+  if (last - first >= 3) {
+    if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
+      answer.ptr = (first += 3);
+      value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
+      // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
+      if(first != last && *first == UC('(')) {
+        for(UC const * ptr = first + 1; ptr != last; ++ptr) {
+          if (*ptr == UC(')')) {
+            answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
+            break;
+          }
+          else if(!((UC('a') <= *ptr && *ptr <= UC('z')) || (UC('A') <= *ptr && *ptr <= UC('Z')) || (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
+            break; // forbidden char, not nan(n-char-seq-opt)
+        }
+      }
+      return answer;
+    }
+    if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
+      if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
+        answer.ptr = first + 8;
+      } else {
+        answer.ptr = first + 3;
+      }
+      value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity();
+      return answer;
+    }
+  }
+  answer.ec = std::errc::invalid_argument;
+  return answer;
+}
+
+/**
+ * Returns true if the floating-pointing rounding mode is to 'nearest'.
+ * It is the default on most system. This function is meant to be inexpensive.
+ * Credit : @mwalcott3
+ */
+fastfloat_really_inline bool rounds_to_nearest() noexcept {
+  // https://lemire.me/blog/2020/06/26/gcc-not-nearest/
+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
+  return false;
+#endif
+  // See
+  // A fast function to check your floating-point rounding mode
+  // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
+  //
+  // This function is meant to be equivalent to :
+  // prior: #include <cfenv>
+  //  return fegetround() == FE_TONEAREST;
+  // However, it is expected to be much faster than the fegetround()
+  // function call.
+  //
+  // The volatile keywoard prevents the compiler from computing the function
+  // at compile-time.
+  // There might be other ways to prevent compile-time optimizations (e.g., asm).
+  // The value does not need to be std::numeric_limits<float>::min(), any small
+  // value so that 1 + x should round to 1 would do (after accounting for excess
+  // precision, as in 387 instructions).
+  static volatile float fmin = std::numeric_limits<float>::min();
+  float fmini = fmin; // we copy it so that it gets loaded at most once.
+  //
+  // Explanation:
+  // Only when fegetround() == FE_TONEAREST do we have that
+  // fmin + 1.0f == 1.0f - fmin.
+  //
+  // FE_UPWARD:
+  //  fmin + 1.0f > 1
+  //  1.0f - fmin == 1
+  //
+  // FE_DOWNWARD or  FE_TOWARDZERO:
+  //  fmin + 1.0f == 1
+  //  1.0f - fmin < 1
+  //
+  // Note: This may fail to be accurate if fast-math has been
+  // enabled, as rounding conventions may not apply.
+  #ifdef FASTFLOAT_VISUAL_STUDIO
+  #   pragma warning(push)
+  //  todo: is there a VS warning?
+  //  see https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
+  #elif defined(__clang__)
+  #   pragma clang diagnostic push
+  #   pragma clang diagnostic ignored "-Wfloat-equal"
+  #elif defined(__GNUC__)
+  #   pragma GCC diagnostic push
+  #   pragma GCC diagnostic ignored "-Wfloat-equal"
+  #endif
+  return (fmini + 1.0f == 1.0f - fmini);
+  #ifdef FASTFLOAT_VISUAL_STUDIO
+  #   pragma warning(pop)
+  #elif defined(__clang__)
+  #   pragma clang diagnostic pop
+  #elif defined(__GNUC__)
+  #   pragma GCC diagnostic pop
+  #endif
+}
+
+} // namespace detail
+
+template<typename T, typename UC, typename>
+FASTFLOAT_CONSTEXPR20
+from_chars_result_t<UC> from_chars(UC const * first, UC const * last,
+                             T &value, chars_format fmt /*= chars_format::general*/)  noexcept  {
+  return from_chars_advanced(first, last, value, parse_options_t<UC>{fmt});
+}
+
+template<typename T, typename UC>
+FASTFLOAT_CONSTEXPR20
+from_chars_result_t<UC> from_chars_advanced(UC const * first, UC const * last,
+                                      T &value, parse_options_t<UC> options)  noexcept  {
+
+  static_assert (is_supported_float_type<T>(), "only float and double are supported");
+  static_assert (is_supported_char_type<UC>(), "only char, wchar_t, char16_t and char32_t are supported");
+
+  from_chars_result_t<UC> answer;
+#ifdef FASTFLOAT_SKIP_WHITE_SPACE  // disabled by default
+  while ((first != last) && fast_float::is_space(uint8_t(*first))) {
+    first++;
+  }
+#endif
+  if (first == last) {
+    answer.ec = std::errc::invalid_argument;
+    answer.ptr = first;
+    return answer;
+  }
+  parsed_number_string_t<UC> pns = parse_number_string<UC>(first, last, options);
+  if (!pns.valid) {
+    if (options.format & chars_format::no_infnan) {
+      answer.ec = std::errc::invalid_argument;
+      answer.ptr = first;
+      return answer;
+    } else {
+      return detail::parse_infnan(first, last, value);
+    }
+  }
+
+  answer.ec = std::errc(); // be optimistic
+  answer.ptr = pns.lastmatch;
+  // The implementation of the Clinger's fast path is convoluted because
+  // we want round-to-nearest in all cases, irrespective of the rounding mode
+  // selected on the thread.
+  // We proceed optimistically, assuming that detail::rounds_to_nearest() returns
+  // true.
+  if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && !pns.too_many_digits) {
+    // Unfortunately, the conventional Clinger's fast path is only possible
+    // when the system rounds to the nearest float.
+    //
+    // We expect the next branch to almost always be selected.
+    // We could check it first (before the previous branch), but
+    // there might be performance advantages at having the check
+    // be last.
+    if(!cpp20_and_in_constexpr() && detail::rounds_to_nearest())  {
+      // We have that fegetround() == FE_TONEAREST.
+      // Next is Clinger's fast path.
+      if (pns.mantissa <=binary_format<T>::max_mantissa_fast_path()) {
+        value = T(pns.mantissa);
+        if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
+        else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
+        if (pns.negative) { value = -value; }
+        return answer;
+      }
+    } else {
+      // We do not have that fegetround() == FE_TONEAREST.
+      // Next is a modified Clinger's fast path, inspired by Jakub JelĂ­nek's proposal
+      if (pns.exponent >= 0 && pns.mantissa <=binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
+#if defined(__clang__) || defined(FASTFLOAT_32BIT)
+        // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
+        if(pns.mantissa == 0) {
+          value = pns.negative ? T(-0.) : T(0.);
+          return answer;
+        }
+#endif
+        value = T(pns.mantissa) * binary_format<T>::exact_power_of_ten(pns.exponent);
+        if (pns.negative) { value = -value; }
+        return answer;
+      }
+    }
+  }
+  adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
+  if(pns.too_many_digits && am.power2 >= 0) {
+    if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
+      am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
+    }
+  }
+  // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0),
+  // then we need to go the long way around again. This is very uncommon.
+  if(am.power2 < 0) { am = digit_comp<T>(pns, am); }
+  to_float(pns.negative, am, value);
+  // Test for over/underflow.
+  if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || am.power2 == binary_format<T>::infinite_power()) {
+    answer.ec = std::errc::result_out_of_range;
+  }
+  return answer;
+}
+
+
+template <typename T, typename UC, typename>
+FASTFLOAT_CONSTEXPR20
+from_chars_result_t<UC> from_chars(UC const* first, UC const* last, T& value, int base) noexcept
+{
+  static_assert (is_supported_char_type<UC>(), "only char, wchar_t, char16_t and char32_t are supported");
+
+  from_chars_result_t<UC> answer;
+#ifdef FASTFLOAT_SKIP_WHITE_SPACE  // disabled by default
+  while ((first != last) && fast_float::is_space(uint8_t(*first))) {
+    first++;
+  }
+#endif
+  if (first == last || base < 2 || base > 36) {
+    answer.ec = std::errc::invalid_argument;
+    answer.ptr = first;
+    return answer;
+  }
+  return parse_int_string(first, last, value, base);
+}
+
+} // namespace fast_float
+
+#endif
+
diff --git a/ThirdParty.md b/ThirdParty.md
index 534a0c6e0..56dce3669 100644
--- a/ThirdParty.md
+++ b/ThirdParty.md
@@ -20,11 +20,12 @@ Name | Version
 [DirectXTK](https://github.com/microsoft/DirectXTK) | April 6, 2021
 [DirectXMath](https://github.com/microsoft/DirectXMath) | January 2022
 [DirectX Mesh Geometry Library](https://github.com/microsoft/DirectXMesh) | June 9, 2021
-[double-conversion](https://github.com/google/double-conversion) | v3.1.5
+[double-conversion](https://github.com/google/double-conversion) | v3.3.0
 [Earcut](https://github.com/mapbox/earcut.hpp) | 2.2.2
 [Easing Equations](http://robertpenner.com/easing/) | 
 [EnumBitmask](https://github.com/Reputeless/EnumBitmask) | v1.0
 [easyexif](https://github.com/mayanklahiri/easyexif) | 
+[fast_float](https://github.com/fastfloat/fast_float) | Version 6.0.0
 [fmt](https://github.com/fmtlib/fmt) | 10.1.1
 [Font Awesome Free](https://github.com/FortAwesome/Font-Awesome) | 5.15.2
 [FreeType](https://www.freetype.org/) | 2.10.4
diff --git a/Web/CMake/BuildThirdParty.cmake b/Web/CMake/BuildThirdParty.cmake
index af19dfa35..0184ce14d 100644
--- a/Web/CMake/BuildThirdParty.cmake
+++ b/Web/CMake/BuildThirdParty.cmake
@@ -84,8 +84,6 @@ target_sources(double_conversion
         ../Siv3D/src/ThirdParty/double-conversion/double-to-string.cc
         ../Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc
         ../Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc
-        ../Siv3D/src/ThirdParty/double-conversion/string-to-double.cc
-        ../Siv3D/src/ThirdParty/double-conversion/strtod.cc
 )
 
 
diff --git a/Web/CMakeLists.txt b/Web/CMakeLists.txt
index 0eab40d17..53534c136 100644
--- a/Web/CMakeLists.txt
+++ b/Web/CMakeLists.txt
@@ -730,8 +730,6 @@ set(SIV3D_THIRDPARTY_SOURCES
   ../Siv3D/src/ThirdParty/double-conversion/double-to-string.cc
   ../Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc
   ../Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc
-  ../Siv3D/src/ThirdParty/double-conversion/string-to-double.cc
-  ../Siv3D/src/ThirdParty/double-conversion/strtod.cc
 
   ../Siv3D/src/ThirdParty/easyexif/exif.cpp
 
diff --git a/WindowsDesktop/Siv3D.vcxproj b/WindowsDesktop/Siv3D.vcxproj
index 2b77cc487..dc70a91e6 100644
--- a/WindowsDesktop/Siv3D.vcxproj
+++ b/WindowsDesktop/Siv3D.vcxproj
@@ -1424,16 +1424,14 @@
     <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\bignum.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\cached-powers.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\diy-fp.h" />
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\double-conversion.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\double-to-string.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\fast-dtoa.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\fixed-dtoa.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\ieee.h" />
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\string-to-double.h" />
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\strtod.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\utils.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\Earcut\earcut.hpp" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\easyexif\exif.h" />
+    <ClInclude Include="..\Siv3D\src\ThirdParty\fast_float\fast_float.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\fmt\format-inl.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\freetype\freetype\config\ftconfig.h" />
     <ClInclude Include="..\Siv3D\src\ThirdParty\freetype\freetype\config\ftheader.h" />
@@ -2849,11 +2847,6 @@
     <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\double-to-string.cc" />
     <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\fast-dtoa.cc" />
     <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\fixed-dtoa.cc" />
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\string-to-double.cc">
-      <DisableSpecificWarnings Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">4244;%(DisableSpecificWarnings)</DisableSpecificWarnings>
-      <DisableSpecificWarnings Condition="'$(Configuration)|$(Platform)'=='Release|x64'">4244;%(DisableSpecificWarnings)</DisableSpecificWarnings>
-    </ClCompile>
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\strtod.cc" />
     <ClCompile Include="..\Siv3D\src\ThirdParty\easyexif\exif.cpp" />
     <ClCompile Include="..\Siv3D\src\ThirdParty\fmt\format.cc" />
     <ClCompile Include="..\Siv3D\src\ThirdParty\infoware\src\cpu\architecture\architecture_non_windows.cpp" />
diff --git a/WindowsDesktop/Siv3D.vcxproj.filters b/WindowsDesktop/Siv3D.vcxproj.filters
index bbef06ad2..0f4234709 100644
--- a/WindowsDesktop/Siv3D.vcxproj.filters
+++ b/WindowsDesktop/Siv3D.vcxproj.filters
@@ -49,9 +49,6 @@
     <Filter Include="src\Siv3D\IntFormatter">
       <UniqueIdentifier>{b4722747-7e40-41a3-a567-89aa12ca64ee}</UniqueIdentifier>
     </Filter>
-    <Filter Include="src\ThirdParty\double-conversion">
-      <UniqueIdentifier>{29244e33-c97b-4389-bd56-3a82e7e2d72f}</UniqueIdentifier>
-    </Filter>
     <Filter Include="src\Siv3D\Logger">
       <UniqueIdentifier>{bf9a23a2-e0e7-4b79-9a43-6def99dc0916}</UniqueIdentifier>
     </Filter>
@@ -1732,6 +1729,12 @@
     <Filter Include="src\ThirdParty\skia\include\private\base">
       <UniqueIdentifier>{13c0dace-b441-4dab-9536-978f581759af}</UniqueIdentifier>
     </Filter>
+    <Filter Include="src\ThirdParty\fast_float">
+      <UniqueIdentifier>{b3e22ba3-df5d-44e4-ab5d-ee1cb2d4f037}</UniqueIdentifier>
+    </Filter>
+    <Filter Include="src\ThirdParty\double-conversion">
+      <UniqueIdentifier>{dffabc2c-5a6d-4f2a-b4f9-d21859d0842a}</UniqueIdentifier>
+    </Filter>
   </ItemGroup>
   <ItemGroup>
     <ClInclude Include="..\Siv3D\include\Siv3D.hpp">
@@ -1767,42 +1770,6 @@
     <ClInclude Include="..\Siv3D\include\ThirdParty\fmt\format.h">
       <Filter>include\ThirdParty\fmt</Filter>
     </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\diy-fp.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\double-conversion.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\double-to-string.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\fast-dtoa.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\fixed-dtoa.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\ieee.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\string-to-double.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\strtod.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\utils.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\bignum.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\bignum-dtoa.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
-    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\cached-powers.h">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClInclude>
     <ClInclude Include="..\Siv3D\src\Siv3D\Logger\ILogger.hpp">
       <Filter>src\Siv3D\Logger</Filter>
     </ClInclude>
@@ -7821,6 +7788,36 @@
     <ClInclude Include="..\Siv3D\src\ThirdParty\zstd\common\bits.h">
       <Filter>src\ThirdParty\zstd\common</Filter>
     </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\fast_float\fast_float.h">
+      <Filter>src\ThirdParty\fast_float</Filter>
+    </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\double-to-string.h">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\utils.h">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\bignum-dtoa.h">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\bignum.h">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\fast-dtoa.h">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\cached-powers.h">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\fixed-dtoa.h">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\diy-fp.h">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClInclude>
+    <ClInclude Include="..\Siv3D\src\ThirdParty\double-conversion\ieee.h">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClInclude>
   </ItemGroup>
   <ItemGroup>
     <ClCompile Include="..\Siv3D\src\Siv3D\Common\Siv3DEngine.cpp">
@@ -7850,30 +7847,6 @@
     <ClCompile Include="..\Siv3D\src\Siv3D\FormatFloat\SivFormatFloat.cpp">
       <Filter>src\Siv3D\FormatFloat</Filter>
     </ClCompile>
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\double-to-string.cc">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClCompile>
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\fast-dtoa.cc">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClCompile>
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\fixed-dtoa.cc">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClCompile>
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\string-to-double.cc">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClCompile>
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\strtod.cc">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClCompile>
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\bignum.cc">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClCompile>
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\bignum-dtoa.cc">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClCompile>
-    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\cached-powers.cc">
-      <Filter>src\ThirdParty\double-conversion</Filter>
-    </ClCompile>
     <ClCompile Include="..\Siv3D\src\Siv3D\FormatInt\SivFormatInt.cpp">
       <Filter>src\Siv3D\FormatInt</Filter>
     </ClCompile>
@@ -11255,6 +11228,24 @@
     <ClCompile Include="..\Siv3D\src\ThirdParty\skia\src\core\SkMatrixInvert.cpp">
       <Filter>src\ThirdParty\skia\src\core</Filter>
     </ClCompile>
+    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\double-to-string.cc">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClCompile>
+    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\bignum-dtoa.cc">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClCompile>
+    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\bignum.cc">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClCompile>
+    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\fast-dtoa.cc">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClCompile>
+    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\cached-powers.cc">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClCompile>
+    <ClCompile Include="..\Siv3D\src\ThirdParty\double-conversion\fixed-dtoa.cc">
+      <Filter>src\ThirdParty\double-conversion</Filter>
+    </ClCompile>
   </ItemGroup>
   <ItemGroup>
     <None Include="..\Siv3D\src\ThirdParty\soloud\src\audiosource\speech\Elements.def">
diff --git a/macOS/OpenSiv3D.xcodeproj/project.pbxproj b/macOS/OpenSiv3D.xcodeproj/project.pbxproj
index f8c1d875f..d0babfbf2 100644
--- a/macOS/OpenSiv3D.xcodeproj/project.pbxproj
+++ b/macOS/OpenSiv3D.xcodeproj/project.pbxproj
@@ -360,19 +360,14 @@
 		2C4397962536163000F6AECD /* CShader_GL4.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 2C4397902536163000F6AECD /* CShader_GL4.cpp */; };
 		2C439F472419D686001154C2 /* format-inl.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F452419D686001154C2 /* format-inl.h */; };
 		2C439F482419D686001154C2 /* format.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F462419D686001154C2 /* format.cc */; };
-		2C439F77241DCEA9001154C2 /* string-to-double.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F63241DCEA9001154C2 /* string-to-double.h */; };
 		2C439F78241DCEA9001154C2 /* utils.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F64241DCEA9001154C2 /* utils.h */; };
 		2C439F79241DCEA9001154C2 /* bignum.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F65241DCEA9001154C2 /* bignum.cc */; };
 		2C439F7A241DCEA9001154C2 /* fixed-dtoa.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F66241DCEA9001154C2 /* fixed-dtoa.h */; };
-		2C439F7B241DCEA9001154C2 /* string-to-double.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F67241DCEA9001154C2 /* string-to-double.cc */; };
 		2C439F7C241DCEA9001154C2 /* bignum-dtoa.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F68241DCEA9001154C2 /* bignum-dtoa.h */; };
 		2C439F7D241DCEA9001154C2 /* fixed-dtoa.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F69241DCEA9001154C2 /* fixed-dtoa.cc */; };
 		2C439F7E241DCEA9001154C2 /* double-to-string.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6A241DCEA9001154C2 /* double-to-string.h */; };
-		2C439F7F241DCEA9001154C2 /* strtod.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6B241DCEA9001154C2 /* strtod.h */; };
 		2C439F80241DCEA9001154C2 /* diy-fp.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6C241DCEA9001154C2 /* diy-fp.h */; };
-		2C439F81241DCEA9001154C2 /* strtod.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F6D241DCEA9001154C2 /* strtod.cc */; };
 		2C439F82241DCEA9001154C2 /* cached-powers.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6E241DCEA9001154C2 /* cached-powers.h */; };
-		2C439F83241DCEA9001154C2 /* double-conversion.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6F241DCEA9001154C2 /* double-conversion.h */; };
 		2C439F84241DCEA9001154C2 /* fast-dtoa.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F70241DCEA9001154C2 /* fast-dtoa.cc */; };
 		2C439F85241DCEA9001154C2 /* double-to-string.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F71241DCEA9001154C2 /* double-to-string.cc */; };
 		2C439F86241DCEA9001154C2 /* cached-powers.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F72241DCEA9001154C2 /* cached-powers.cc */; };
@@ -778,6 +773,7 @@
 		2C794B6425C4241800034D81 /* GL4Texture.hpp in Headers */ = {isa = PBXBuildFile; fileRef = 2C794B6225C4241800034D81 /* GL4Texture.hpp */; };
 		2C794B6625C4FD0400034D81 /* plutovg-dash.c in Sources */ = {isa = PBXBuildFile; fileRef = 2C794B6525C4FD0400034D81 /* plutovg-dash.c */; };
 		2C796EB125CA42130003B7EC /* libharfbuzz.a in Frameworks */ = {isa = PBXBuildFile; fileRef = 2C796EB025CA41DA0003B7EC /* libharfbuzz.a */; };
+		2C7A77932B3BF56400E40A53 /* fast_float.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C7A77922B3BF56400E40A53 /* fast_float.h */; };
 		2C7CA7EE29DF0D3B00FEC104 /* SivSimpleTable.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 2C7CA7ED29DF0D3B00FEC104 /* SivSimpleTable.cpp */; };
 		2C7CA7F229E43A0A00FEC104 /* SivTextAreaEditState.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 2C7CA7F129E43A0A00FEC104 /* SivTextAreaEditState.cpp */; };
 		2C7DE5DA261379FD00D7F031 /* gif_lib.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C7DE5D9261379FD00D7F031 /* gif_lib.h */; };
@@ -2725,19 +2721,14 @@
 		2C4397902536163000F6AECD /* CShader_GL4.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = CShader_GL4.cpp; sourceTree = "<group>"; };
 		2C439F452419D686001154C2 /* format-inl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "format-inl.h"; sourceTree = "<group>"; };
 		2C439F462419D686001154C2 /* format.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = format.cc; sourceTree = "<group>"; };
-		2C439F63241DCEA9001154C2 /* string-to-double.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "string-to-double.h"; sourceTree = "<group>"; };
 		2C439F64241DCEA9001154C2 /* utils.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = utils.h; sourceTree = "<group>"; };
 		2C439F65241DCEA9001154C2 /* bignum.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = bignum.cc; sourceTree = "<group>"; };
 		2C439F66241DCEA9001154C2 /* fixed-dtoa.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "fixed-dtoa.h"; sourceTree = "<group>"; };
-		2C439F67241DCEA9001154C2 /* string-to-double.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "string-to-double.cc"; sourceTree = "<group>"; };
 		2C439F68241DCEA9001154C2 /* bignum-dtoa.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "bignum-dtoa.h"; sourceTree = "<group>"; };
 		2C439F69241DCEA9001154C2 /* fixed-dtoa.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "fixed-dtoa.cc"; sourceTree = "<group>"; };
 		2C439F6A241DCEA9001154C2 /* double-to-string.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "double-to-string.h"; sourceTree = "<group>"; };
-		2C439F6B241DCEA9001154C2 /* strtod.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = strtod.h; sourceTree = "<group>"; };
 		2C439F6C241DCEA9001154C2 /* diy-fp.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "diy-fp.h"; sourceTree = "<group>"; };
-		2C439F6D241DCEA9001154C2 /* strtod.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = strtod.cc; sourceTree = "<group>"; };
 		2C439F6E241DCEA9001154C2 /* cached-powers.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "cached-powers.h"; sourceTree = "<group>"; };
-		2C439F6F241DCEA9001154C2 /* double-conversion.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "double-conversion.h"; sourceTree = "<group>"; };
 		2C439F70241DCEA9001154C2 /* fast-dtoa.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "fast-dtoa.cc"; sourceTree = "<group>"; };
 		2C439F71241DCEA9001154C2 /* double-to-string.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "double-to-string.cc"; sourceTree = "<group>"; };
 		2C439F72241DCEA9001154C2 /* cached-powers.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "cached-powers.cc"; sourceTree = "<group>"; };
@@ -3233,6 +3224,7 @@
 		2C794B6225C4241800034D81 /* GL4Texture.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = GL4Texture.hpp; sourceTree = "<group>"; };
 		2C794B6525C4FD0400034D81 /* plutovg-dash.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = "plutovg-dash.c"; sourceTree = "<group>"; };
 		2C796EB025CA41DA0003B7EC /* libharfbuzz.a */ = {isa = PBXFileReference; lastKnownFileType = archive.ar; name = libharfbuzz.a; path = ../Siv3D/lib/macOS/harfbuzz/libharfbuzz.a; sourceTree = "<group>"; };
+		2C7A77922B3BF56400E40A53 /* fast_float.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = fast_float.h; sourceTree = "<group>"; };
 		2C7CA7EB29DF0D0800FEC104 /* SimpleTable.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = SimpleTable.hpp; sourceTree = "<group>"; };
 		2C7CA7ED29DF0D3B00FEC104 /* SivSimpleTable.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = SivSimpleTable.cpp; sourceTree = "<group>"; };
 		2C7CA7EF29E439E300FEC104 /* TextAreaEditState.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = TextAreaEditState.hpp; sourceTree = "<group>"; };
@@ -6387,6 +6379,7 @@
 				2C439F62241DCEA9001154C2 /* double-conversion */,
 				2C53C34A25613BCC0072831A /* Earcut */,
 				2CEC7DC225FA4DD900704B99 /* easyexif */,
+				2C7A77912B3BF56400E40A53 /* fast_float */,
 				2C439F442419D686001154C2 /* fmt */,
 				2C43C80325C837F000D6D613 /* freetype */,
 				2CC5842426461D7900C33E9F /* gif_load */,
@@ -6507,19 +6500,14 @@
 		2C439F62241DCEA9001154C2 /* double-conversion */ = {
 			isa = PBXGroup;
 			children = (
-				2C439F63241DCEA9001154C2 /* string-to-double.h */,
 				2C439F64241DCEA9001154C2 /* utils.h */,
 				2C439F65241DCEA9001154C2 /* bignum.cc */,
 				2C439F66241DCEA9001154C2 /* fixed-dtoa.h */,
-				2C439F67241DCEA9001154C2 /* string-to-double.cc */,
 				2C439F68241DCEA9001154C2 /* bignum-dtoa.h */,
 				2C439F69241DCEA9001154C2 /* fixed-dtoa.cc */,
 				2C439F6A241DCEA9001154C2 /* double-to-string.h */,
-				2C439F6B241DCEA9001154C2 /* strtod.h */,
 				2C439F6C241DCEA9001154C2 /* diy-fp.h */,
-				2C439F6D241DCEA9001154C2 /* strtod.cc */,
 				2C439F6E241DCEA9001154C2 /* cached-powers.h */,
-				2C439F6F241DCEA9001154C2 /* double-conversion.h */,
 				2C439F70241DCEA9001154C2 /* fast-dtoa.cc */,
 				2C439F71241DCEA9001154C2 /* double-to-string.cc */,
 				2C439F72241DCEA9001154C2 /* cached-powers.cc */,
@@ -7933,6 +7921,14 @@
 			path = Metal;
 			sourceTree = "<group>";
 		};
+		2C7A77912B3BF56400E40A53 /* fast_float */ = {
+			isa = PBXGroup;
+			children = (
+				2C7A77922B3BF56400E40A53 /* fast_float.h */,
+			);
+			path = fast_float;
+			sourceTree = "<group>";
+		};
 		2C7CA7EC29DF0D3B00FEC104 /* SimpleTable */ = {
 			isa = PBXGroup;
 			children = (
@@ -13895,7 +13891,6 @@
 				2C423254242B19D100A16BCA /* egl_context.h in Headers */,
 				2C4AEF882635CACB00D36CFC /* tinyxml2.h in Headers */,
 				2C636E512657F7D300AF029F /* soloud_fader.h in Headers */,
-				2C439F83241DCEA9001154C2 /* double-conversion.h in Headers */,
 				2CEFB4DB2AB858DB005EBD5F /* SkEventTracer.h in Headers */,
 				2C43C89425C837F100D6D613 /* svcfftl.h in Headers */,
 				2C6390FC2539ABAB0030F18E /* MetalVertexShader.hpp in Headers */,
@@ -14066,7 +14061,6 @@
 				2CEFB6882AB858DD005EBD5F /* SkOpCoincidence.h in Headers */,
 				2CEFB4762AB858DB005EBD5F /* SkFontMgr.h in Headers */,
 				2CFC212B25F7324F00C51D0D /* turbojpeg.h in Headers */,
-				2C439F77241DCEA9001154C2 /* string-to-double.h in Headers */,
 				2CFC214C25F739B400C51D0D /* hb-draw.h in Headers */,
 				2CC584832648246900C33E9F /* ogg.h in Headers */,
 				2CEFB50D2AB858DC005EBD5F /* SkFixed.h in Headers */,
@@ -14096,6 +14090,7 @@
 				2CB18EA126B5A68700862C28 /* as_restore.h in Headers */,
 				2C43C86925C837F000D6D613 /* ftwinfnt.h in Headers */,
 				2CC8BBA328C7532F008C770A /* CEmpty.hpp in Headers */,
+				2C7A77932B3BF56400E40A53 /* fast_float.h in Headers */,
 				2C636EAF2657F7D300AF029F /* darray.h in Headers */,
 				2C43C87025C837F000D6D613 /* ftheader.h in Headers */,
 				2C636E7A2657F7D300AF029F /* miniaudio.h in Headers */,
@@ -14219,7 +14214,6 @@
 				2C27A9EF256E359400756617 /* GL4SamplerState.hpp in Headers */,
 				2CEFB47C2AB858DB005EBD5F /* SkUnPreMultiply.h in Headers */,
 				2CEFB4D02AB858DB005EBD5F /* SkPathOps.h in Headers */,
-				2C439F7F241DCEA9001154C2 /* strtod.h in Headers */,
 				2C13C8EC25B95ABA0054B968 /* DirectoryWatcherDetail.hpp in Headers */,
 				2C43C8C525C837F100D6D613 /* ftbdf.h in Headers */,
 				2C0A4D6C2566A855002A4B5E /* plutovg-private.h in Headers */,
@@ -14731,7 +14725,6 @@
 				2CC8BD8228C75331008C770A /* SivChildProcess.cpp in Sources */,
 				2C2AA37226009C74003F3EBC /* b2_mouse_joint.cpp in Sources */,
 				2C47B49024DD97F2008D83BE /* muParserBase.cpp in Sources */,
-				2C439F81241DCEA9001154C2 /* strtod.cc in Sources */,
 				2C0A4D672566A855002A4B5E /* sw_ft_raster.c in Sources */,
 				2C27113E2A7EA6CF00BD4014 /* SivTrail.cpp in Sources */,
 				2C636E772657F7D300AF029F /* soloud_core_3d.cpp in Sources */,
@@ -14927,7 +14920,6 @@
 				2CC8BDEE28C75332008C770A /* SivResource.cpp in Sources */,
 				2C533742264E0EE600CE0F1B /* MP3Decoder.cpp in Sources */,
 				2CC8BC8C28C75330008C770A /* ScriptBezier2.cpp in Sources */,
-				2C439F7B241DCEA9001154C2 /* string-to-double.cc in Sources */,
 				2C60AE7A248158A500277281 /* architecture_non_windows.cpp in Sources */,
 				2CC8BD8D28C75332008C770A /* SivPlane.cpp in Sources */,
 				2C794B5825C4080A00034D81 /* CTexture_GL4.cpp in Sources */,