-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem_unittests.py
247 lines (186 loc) · 9.82 KB
/
problem_unittests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from unittest.mock import MagicMock, patch
import numpy as np
import torch
class _TestNN(torch.nn.Module):
def __init__(self, input_size, output_size):
super(_TestNN, self).__init__()
self.decoder = torch.nn.Linear(input_size, output_size)
self.forward_called = False
def forward(self, nn_input, hidden):
self.forward_called = True
output = self.decoder(nn_input)
return output, hidden
def _print_success_message():
print('Tests Passed')
class AssertTest(object):
def __init__(self, params):
self.assert_param_message = '\n'.join([str(k) + ': ' + str(v) + '' for k, v in params.items()])
def test(self, assert_condition, assert_message):
assert assert_condition, assert_message + '\n\nUnit Test Function Parameters\n' + self.assert_param_message
def test_create_lookup_tables(create_lookup_tables):
test_text = '''
Moe_Szyslak Moe's Tavern Where the elite meet to drink
Bart_Simpson Eh yeah hello is Mike there Last name Rotch
Moe_Szyslak Hold on I'll check Mike Rotch Mike Rotch Hey has anybody seen Mike Rotch lately
Moe_Szyslak Listen you little puke One of these days I'm gonna catch you and I'm gonna carve my name on your back with an ice pick
Moe_Szyslak Whats the matter Homer You're not your normal effervescent self
Homer_Simpson I got my problems Moe Give me another one
Moe_Szyslak Homer hey you should not drink to forget your problems
Barney_Gumble Yeah you should only drink to enhance your social skills'''
test_text = test_text.lower()
test_text = test_text.split()
vocab_to_int, int_to_vocab = create_lookup_tables(test_text)
# Check types
assert isinstance(vocab_to_int, dict),\
'vocab_to_int is not a dictionary.'
assert isinstance(int_to_vocab, dict),\
'int_to_vocab is not a dictionary.'
# Compare lengths of dicts
assert len(vocab_to_int) == len(int_to_vocab),\
'Length of vocab_to_int and int_to_vocab don\'t match. ' \
'vocab_to_int is length {}. int_to_vocab is length {}'.format(len(vocab_to_int), len(int_to_vocab))
# Make sure the dicts have the same words
vocab_to_int_word_set = set(vocab_to_int.keys())
int_to_vocab_word_set = set(int_to_vocab.values())
assert not (vocab_to_int_word_set - int_to_vocab_word_set),\
'vocab_to_int and int_to_vocab don\'t have the same words.' \
'{} found in vocab_to_int, but not in int_to_vocab'.format(vocab_to_int_word_set - int_to_vocab_word_set)
assert not (int_to_vocab_word_set - vocab_to_int_word_set),\
'vocab_to_int and int_to_vocab don\'t have the same words.' \
'{} found in int_to_vocab, but not in vocab_to_int'.format(int_to_vocab_word_set - vocab_to_int_word_set)
# Make sure the dicts have the same word ids
vocab_to_int_word_id_set = set(vocab_to_int.values())
int_to_vocab_word_id_set = set(int_to_vocab.keys())
assert not (vocab_to_int_word_id_set - int_to_vocab_word_id_set),\
'vocab_to_int and int_to_vocab don\'t contain the same word ids.' \
'{} found in vocab_to_int, but not in int_to_vocab'.format(vocab_to_int_word_id_set - int_to_vocab_word_id_set)
assert not (int_to_vocab_word_id_set - vocab_to_int_word_id_set),\
'vocab_to_int and int_to_vocab don\'t contain the same word ids.' \
'{} found in int_to_vocab, but not in vocab_to_int'.format(int_to_vocab_word_id_set - vocab_to_int_word_id_set)
# Make sure the dicts make the same lookup
missmatches = [(word, id, id, int_to_vocab[id]) for word, id in vocab_to_int.items() if int_to_vocab[id] != word]
assert not missmatches,\
'Found {} missmatche(s). First missmatch: vocab_to_int[{}] = {} and int_to_vocab[{}] = {}'.format(len(missmatches),
*missmatches[0])
assert len(vocab_to_int) > len(set(test_text))/2,\
'The length of vocab seems too small. Found a length of {}'.format(len(vocab_to_int))
_print_success_message()
def test_tokenize(token_lookup):
symbols = set(['.', ',', '"', ';', '!', '?', '(', ')', '-', '\n'])
token_dict = token_lookup()
# Check type
assert isinstance(token_dict, dict), \
'Returned type is {}.'.format(type(token_dict))
# Check symbols
missing_symbols = symbols - set(token_dict.keys())
unknown_symbols = set(token_dict.keys()) - symbols
assert not missing_symbols, \
'Missing symbols: {}'.format(missing_symbols)
assert not unknown_symbols, \
'Unknown symbols: {}'.format(unknown_symbols)
# Check values type
bad_value_type = [type(val) for val in token_dict.values() if not isinstance(val, str)]
assert not bad_value_type,\
'Found token as {} type.'.format(bad_value_type[0])
# Check for spaces
key_has_spaces = [k for k in token_dict.keys() if ' ' in k]
val_has_spaces = [val for val in token_dict.values() if ' ' in val]
assert not key_has_spaces,\
'The key "{}" includes spaces. Remove spaces from keys and values'.format(key_has_spaces[0])
assert not val_has_spaces,\
'The value "{}" includes spaces. Remove spaces from keys and values'.format(val_has_spaces[0])
# Check for symbols in values
symbol_val = ()
for symbol in symbols:
for val in token_dict.values():
if symbol in val:
symbol_val = (symbol, val)
assert not symbol_val,\
'Don\'t use a symbol that will be replaced in your tokens. Found the symbol {} in value {}'.format(*symbol_val)
_print_success_message()
def test_rnn(RNN, train_on_gpu):
batch_size = 50
sequence_length = 3
vocab_size = 20
output_size=20
embedding_dim=15
hidden_dim = 10
n_layers = 2
# create test RNN
# params: (vocab_size, output_size, embedding_dim, hidden_dim, n_layers)
rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers)
# create test input
a = np.random.randint(vocab_size, size=(batch_size, sequence_length))
#b = torch.LongTensor(a)
b = torch.from_numpy(a)
hidden = rnn.init_hidden(batch_size)
if(train_on_gpu):
rnn.cuda()
b = b.cuda()
output, hidden_out = rnn(b, hidden)
assert_test = AssertTest({
'Input Size': vocab_size,
'Output Size': output_size,
'Hidden Dim': hidden_dim,
'N Layers': n_layers,
'Batch Size': batch_size,
'Sequence Length': sequence_length,
'Input': b})
# initialization
correct_hidden_size = (n_layers, batch_size, hidden_dim)
if type(hidden) == tuple:
# LSTM
assert_condition = hidden[0].size() == correct_hidden_size
else:
# GRU
assert_condition = hidden.size() == correct_hidden_size
assert_message = 'Wrong hidden state size. Expected type {}. Got type {}'.format(correct_hidden_size, hidden[0].size())
assert_test.test(assert_condition, assert_message)
# output of rnn
correct_hidden_size = (n_layers, batch_size, hidden_dim)
if type(hidden) == tuple:
# LSTM
assert_condition = hidden_out[0].size() == correct_hidden_size
else:
# GRU
assert_condition = hidden_out.size() == correct_hidden_size
assert_message = 'Wrong hidden state size. Expected type {}. Got type {}'.format(correct_hidden_size, hidden_out[0].size())
assert_test.test(assert_condition, assert_message)
correct_output_size = (batch_size, output_size)
assert_condition = output.size() == correct_output_size
assert_message = 'Wrong output size. Expected type {}. Got type {}'.format(correct_output_size, output.size())
assert_test.test(assert_condition, assert_message)
_print_success_message()
def test_forward_back_prop(RNN, forward_back_prop, train_on_gpu):
batch_size = 200
input_size = 20
output_size = 10
sequence_length = 3
embedding_dim=15
hidden_dim = 10
n_layers = 2
learning_rate = 0.01
# create test RNN
rnn = RNN(input_size, output_size, embedding_dim, hidden_dim, n_layers)
mock_decoder = MagicMock(wraps=_TestNN(input_size, output_size))
if train_on_gpu:
mock_decoder.cuda()
mock_decoder_optimizer = MagicMock(wraps=torch.optim.Adam(mock_decoder.parameters(), lr=learning_rate))
mock_criterion = MagicMock(wraps=torch.nn.CrossEntropyLoss())
with patch.object(torch.autograd, 'backward', wraps=torch.autograd.backward) as mock_autograd_backward:
inp = torch.FloatTensor(np.random.rand(batch_size, input_size))
target = torch.LongTensor(np.random.randint(output_size, size=batch_size))
hidden = rnn.init_hidden(batch_size)
loss, hidden_out = forward_back_prop(mock_decoder, mock_decoder_optimizer, mock_criterion, inp, target, hidden)
if type(hidden_out) == tuple:
# LSTM
assert (hidden_out[0][0]==hidden[0][0]).sum()==batch_size*hidden_dim, 'Returned hidden state is the incorrect size.'
else:
# GRU
assert (hidden_out[0]==hidden[0]).sum()==batch_size*hidden_dim, 'Returned hidden state is the incorrect size.'
assert mock_decoder.zero_grad.called or mock_decoder_optimizer.zero_grad.called, 'Didn\'t set the gradients to 0.'
assert mock_decoder.forward_called, 'Forward propagation not called.'
assert mock_autograd_backward.called, 'Backward propagation not called'
assert mock_decoder_optimizer.step.called, 'Optimization step not performed'
assert type(loss) == float, 'Wrong return type. Expected {}, got {}'.format(float, type(loss))
_print_success_message()