forked from wltn0029/CS492_RUMOR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmallset_Main_TD_RvNN.py
313 lines (290 loc) · 11.4 KB
/
smallset_Main_TD_RvNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# -*- coding: utf-8 -*-
"""
@object: Twitter
@task: Main function of recursive NN (4 classes)
@author: majing
@structure: Top-Down recursive Neural Networks
@variable: Nepoch, lr, obj, fold
@time: Jan 24, 2018
"""
import sys
#reload(sys)
#sys.setdefaultencoding('utf-8')
import smallset_TD_RvNN as TD_RvNN
import math
import numpy as np
from numpy.testing import assert_array_almost_equal
from Main_Bid_RvNN import loadData, constructTree
import time
import datetime
import random
from evaluate import *
import torch
obj = "Twitter15" # choose dataset, you can choose either "Twitter15" or "Twitter16"
fold = "2" # fold index, choose from 0-4
tag = "_u2b"
vocabulary_size = 5000
hidden_dim = 100
Nclass = 4
Nepoch = 500
lr = 0.005
unit="TD_RvNN-"+obj+str(fold)+'-vol.'+str(vocabulary_size)+tag
#lossPath = "../loss/loss-"+unit+".txt"
#modelPath = "../param/param-"+unit+".npz"
treePath_td = '../resource/data.TD_RvNN.vol_'+str(vocabulary_size)+'.txt'
treePath_bu = '../resource/data.BU_RvNN.vol_'+str(vocabulary_size)+'.txt'
trainPath = "../nfold/RNNtrainSet_"+obj+str(fold)+"_tree.txt"
testPath = "../nfold/RNNtestSet_"+obj+str(fold)+"_tree.txt"
labelPath = "../resource/"+obj+"_label_All.txt"
#floss = open(lossPath, 'a+')
################################### tools #####################################
def str2matrix(Str, MaxL): # str = index:wordfreq index:wordfreq
wordFreq, wordIndex = [], []
l = 0
for pair in Str.split(' '):
wordFreq.append(float(pair.split(':')[1]))
wordIndex.append(int(pair.split(':')[0]))
l += 1
ladd = [ 0 for i in range( MaxL-l ) ]
wordFreq += ladd
wordIndex += ladd
#print MaxL, l, len(Str.split(' ')), len(wordFreq)
#print Str.split(' ')
return wordFreq, wordIndex
def loadLabel(label, l1, l2, l3, l4):
labelset_nonR, labelset_f, labelset_t, labelset_u = ['news', 'non-rumor'], ['false'], ['true'], ['unverified']
if label in labelset_nonR:
y_train = [1,0,0,0]
l1 += 1
if label in labelset_f:
y_train = [0,1,0,0]
l2 += 1
if label in labelset_t:
y_train = [0,0,1,0]
l3 += 1
if label in labelset_u:
y_train = [0,0,0,1]
l4 += 1
return y_train, l1,l2,l3,l4
def constructTree(tree):
## tree: {index1:{'parent':, 'maxL':, 'vec':}
## 1. ini tree node
index2node = {}
for i in tree:
node = TD_RvNN.Node_tweet(idx=i)
index2node[i] = node
## 2. construct tree
for j in tree:
indexC = j
indexP = tree[j]['parent']
nodeC = index2node[indexC]
wordFreq, wordIndex = str2matrix( tree[j]['vec'], tree[j]['maxL'] )
#print tree[j]['maxL']
nodeC.index = wordIndex
nodeC.word = wordFreq
#nodeC.time = tree[j]['post_t']
## not root node ##
if not indexP == 'None':
nodeP = index2node[int(indexP)]
nodeC.parent = nodeP
nodeP.children.append(nodeC)
## root node ##
else:
root = nodeC
## 3. convert tree to DNN input
parent_num = tree[j]['parent_num']
ini_x, ini_index = str2matrix( "0:0", tree[j]['maxL'] )
#x_word, x_index, tree = tree_gru_u2b.gen_nn_inputs(root, ini_x, ini_index)
x_word, x_index, tree = TD_RvNN.gen_nn_inputs(root, ini_x)
return x_word, x_index, tree, parent_num
################################# loas data ###################################
def loadData():
print ("loading tree label"),
labelDic = {}
for line in open(labelPath):
line = line.rstrip()
label, eid = line.split('\t')[0], line.split('\t')[2]
labelDic[eid] = label.lower()
print( len(labelDic))
print( "reading tree", )## X
treeDic = {}
for line, _ in zip(open(treePath_td), open(treePath_bu)):
line_td, = line.rstrip()
eid, indexP, indexC = line.split('\t')[0], line.split('\t')[1], int(line.split('\t')[2])
parent_num, maxL = int(line.split('\t')[3]), int(line.split('\t')[4])
Vec = line.split('\t')[5]
if treeDic.get(eid) is None:
treeDic[eid] = {}
treeDic[eid][indexC] = {'parent':indexP, 'parent_num':parent_num, 'maxL':maxL, 'vec':Vec}
print( 'tree no:', len(treeDic))
print( "loading train set", )
tree_train, word_train, index_train, y_train, parent_num_train, c = [], [], [], [], [], 0
l1,l2,l3,l4 = 0,0,0,0
i , a, b, d = 0, 0, 0, 0
for eid in open(trainPath):
#if c > 8: break
i +=1
eid = eid.rstrip()
if labelDic.get(eid) is None:
a+=1
continue
if treeDic.get(eid) is None:
b+=1
continue
if len(treeDic[eid]) <= 0:
#print labelDic[eid]
d+=1
continue
if len(treeDic[eid][0]) < 2:
continue
## 1. load label
label = labelDic[eid]
y, l1,l2,l3,l4 = loadLabel(label, l1, l2, l3, l4)
y_train.append(y)
## 2. construct tree
#print eid
x_word, x_index, tree, parent_num = constructTree(treeDic[eid])
tree_train.append(tree)
word_train.append(x_word)
index_train.append(x_index)
parent_num_train.append(parent_num)
#print treeDic[eid]
#print tree, child_num
#exit(0)
c += 1
print( l1,l2,l3,l4)
print(i,a,b,d)
print( "loading test set", )
tree_test, word_test, index_test, parent_num_test, y_test, c = [], [], [], [], [], 0
l1,l2,l3,l4 = 0,0,0,0
for eid in open(testPath):
#if c > 4: break
eid = eid.rstrip()
if labelDic.get(eid) is None: continue
if treeDic.get(eid) is None: continue
if len(treeDic[eid]) <= 0:
#print labelDic[eid]
continue
## 1. load label
label = labelDic[eid]
y, l1,l2,l3,l4 = loadLabel(label, l1, l2, l3, l4)
y_test.append(y)
## 2. construct tree
x_word, x_index, tree, parent_num = constructTree(treeDic[eid])
tree_test.append(tree)
word_test.append(x_word)
index_test.append(x_index)
parent_num_test.append(parent_num)
c += 1
print( l1,l2,l3,l4)
print( "train no:", len(tree_train), len(word_train), len(index_train),len(parent_num_train), len(y_train))
print( "test no:", len(tree_test), len(word_test), len(index_test), len(parent_num_test), len(y_test))
print("dim1 for 0:", len(tree_train[0]), len(word_train[0]), len(index_train[0]))
print("case 0:", tree_train[0][0], word_train[0][0], index_train[0][0], parent_num_train[0])
#print index_train[0]
#print word_train[0]
#print tree_train[0]
#exit(0)
return tree_train, word_train, index_train, parent_num_train, y_train, tree_test, word_test, index_test, parent_num_test, y_test
##################################### MAIN ####################################
## 1. load tree & word & index & label
tree_train, word_train, index_train, parent_num_train, y_train, tree_test, word_test, index_test, parent_num_test, y_test = loadData()
## 1.5. Check device and get device (gpu, cpu)
#device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
device = 'cpu'
## 2. ini RNN model
t0 = time.time()
model = TD_RvNN.RvNN(vocabulary_size, hidden_dim, Nclass, device=device)
t1 = time.time()
print('Recursive model established,', (t1-t0)/60)
#if os.path.isfile(modelPath):
# load_model_Recursive_gruEmb(modelPath, model)
# lr = 0.0001
######debug here######
#print len(tree_test[121]), len(index_test[121]), len(word_test[121])
#print tree_test[121]
#exit(0)
#loss, pred_y = model.train_step_up(word_test[121], index_test[121], tree_test[121], y_test[121], lr)
#print loss, pred_y
#exit(0)
'''i=568
loss, pred_y = model.train_step_up(word_train[i], index_train[i], parent_num_train[i], tree_train[i], y_train[i], lr)
print loss, pred_y
print len(tree_train[i]), len(word_train[i]), parent_num_train[i]
print tree_train[i]
print word_train[i]
print 'final_state:',model._evaluate(word_train[i], index_train[i], parent_num_train[i], tree_train[i])
tree_states=model._evaluate2(word_train[i], index_train[i], parent_num_train[i], tree_train[i])
print 'tree_states:', tree_states
print tree_states[-1:].mean(axis=0)
tree_states_test=model._evaluate3(word_train[i], index_train[i], tree_train[i])
print 'l:',len(tree_states_test)
print 'lo:',tree_states_test[parent_num_train[i]:]'''
######################
## 3. looping SGD
losses_5, losses = [], []
num_examples_seen = 0
for epoch in range(Nepoch):
start = time.time()
## one SGD
indexs = [i for i in range(len(y_train))]
#random.shuffle(indexs)
for i in indexs:
'''print i,":", len(tree_train[i])
print tree_train[i]
tree_state = model._state(word_train[i], index_train[i], child_num_train[i], tree_train[i])
print len(tree_state)
print tree_state
evl = model._evaluate(word_train[i], index_train[i], child_num_train[i], tree_train[i])
print len(evl)
print evl'''
loss, pred_y = model.forward(word_train[i], index_train[i], parent_num_train[i], tree_train[i], y_train[i], lr)
#print loss, pred_y
losses.append(round(float(loss),2))
'''if math.isnan(loss):
# continue
print loss, pred_y
print i
print len(tree_train[i]), len(word_train[i]), parent_num_train[i]
print tree_train[i]
print word_train[i]
print 'final_state:',model._evaluate(word_train[i], index_train[i], parent_num_train[i], tree_train[i])'''
num_examples_seen += 1
print("epoch=%d: loss=%f, time=%d" % ( epoch, np.mean(losses), time.time() - start))
#floss.write(str(time)+": epoch="+str(epoch)+" loss="+str(loss) +'\n')
sys.stdout.flush()
#print losses
#exit(0)
## cal loss & evaluate
if epoch % 5 == 0:
losses_5.append((num_examples_seen, np.mean(losses)))
time_ = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("%s: Loss after num_examples_seen=%d epoch=%d: %f" % (time_, num_examples_seen, epoch, np.mean(losses)))
#floss.write(str(time)+": epoch="+str(epoch)+" loss="+str(loss) +'\n')
#floss.flush()
sys.stdout.flush()
prediction = []
for j in range(len(y_test)):
#print j
prediction.append(model.predict_up(word_test[j], index_test[j],
parent_num_test[j], tree_test[j]).tolist())
print(prediction[0])
print(y_test[0])
print(type(prediction[0]))
print(type(y_test[0]))
res = evaluation_4class(prediction, y_test)
print('results:', res)
#floss.write(str(res)+'\n')
#floss.flush()
sys.stdout.flush()
## Adjust the learning rate if loss increases
if len(losses_5) > 1 and losses_5[-1][1] > losses_5[-2][1]:
lr = lr * 0.5
print("Setting learning rate to %f" % lr)
#floss.write("Setting learning rate to:"+str(lr)+'\n')
#floss.flush()
sys.stdout.flush()
#save_model_Recursive_gruEmb(modelPath, model)
#floss.flush()
losses = []
#floss.close()