|
10 | 10 | (u_size=(64, 3, 5), y_size=(4, 10, 5), out_size=(3, 10, 5),
|
11 | 11 | branch=(64, 32, 32, 16), trunk=(4, 8, 8, 16), name="Vector"),
|
12 | 12 | (u_size=(64, 4, 3, 3, 5), y_size=(4, 10, 5), out_size=(4, 3, 3, 10, 5),
|
13 |
| - branch=(64, 32, 32, 16), trunk=(4, 8, 8, 16), name="Tensor")] |
| 13 | + branch=(64, 32, 32, 16), trunk=(4, 8, 8, 16), name="Tensor") |
| 14 | + ] |
14 | 15 |
|
15 | 16 | @testset "$(setup.name)" for setup in setups
|
16 | 17 | u = rand(Float32, setup.u_size...) |> aType
|
|
34 | 35 | additional=Dense(16 => 4), name="Scalar II"),
|
35 | 36 | (u_size=(64, 3, 5), y_size=(8, 10, 5), out_size=(4, 3, 10, 5),
|
36 | 37 | branch=(64, 32, 32, 16), trunk=(8, 8, 8, 16),
|
37 |
| - additional=Dense(16 => 4), name="Vector")] |
| 38 | + additional=Dense(16 => 4), name="Vector") |
| 39 | + ] |
38 | 40 |
|
39 | 41 | @testset "Additional layer: $(setup.name)" for setup in setups
|
40 | 42 | u = rand(Float32, setup.u_size...) |> aType
|
|
50 | 52 | @test setup.out_size == size(pred)
|
51 | 53 |
|
52 | 54 | __f = (u, y, ps) -> sum(abs2, first(deeponet((u, y), ps, st)))
|
53 |
| - test_gradients( |
54 |
| - __f, u, y, ps; atol=1.0f-3, rtol=1.0f-3, skip_backends=[AutoEnzyme()]) |
| 55 | + @test_gradients(__f, u, y, ps; atol=1.0f-3, rtol=1.0f-3) |
55 | 56 | end
|
56 | 57 |
|
57 | 58 | @testset "Embedding layer mismatch" begin
|
58 | 59 | u = rand(Float32, 64, 5) |> aType
|
59 | 60 | y = rand(Float32, 1, 10, 5) |> aType
|
60 | 61 |
|
61 |
| - deeponet = DeepONet(Chain(Dense(64 => 32), Dense(32 => 32), Dense(32 => 20)), |
62 |
| - Chain(Dense(1 => 8), Dense(8 => 8), Dense(8 => 16))) |
| 62 | + deeponet = DeepONet( |
| 63 | + Chain(Dense(64 => 32), Dense(32 => 32), Dense(32 => 20)), |
| 64 | + Chain(Dense(1 => 8), Dense(8 => 8), Dense(8 => 16)) |
| 65 | + ) |
63 | 66 |
|
64 | 67 | ps, st = Lux.setup(rng, deeponet) |> dev
|
65 | 68 | @test_throws ArgumentError deeponet((u, y), ps, st)
|
|
0 commit comments