-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
279 lines (243 loc) · 8.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from __future__ import division
from model import *
from logger import *
from utils import *
from dataset import *
from data_augment import *
from test import evaluate
from terminaltables import AsciiTable
import os
import sys
import time
import datetime
import argparse
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
parser.add_argument(
"--batch_size", type=int, default=8, help="size of each image batch"
)
parser.add_argument(
"--gradient_accumulations",
type=int,
default=2,
help="number of gradient accums before step",
)
parser.add_argument(
"--model_def",
type=str,
default="config/yolov3.cfg",
help="path to model definition file",
)
parser.add_argument(
"--data_config",
type=str,
default="config/data.cfg",
help="path to data config file",
)
parser.add_argument(
"--pretrained_weights",
type=str,
help="if specified starts from checkpoint model",
)
parser.add_argument(
"--n_cpu",
type=int,
default=1,
help="number of cpu threads to use during batch generation",
)
parser.add_argument("--ngpu", type=int, default=10, help="number of gpu")
parser.add_argument(
"--img_size", type=int, default=416, help="size of each image dimension"
)
parser.add_argument(
"--half", dest="half", action="store_true", default=False, help="FP16 training"
)
parser.add_argument(
"--checkpoint_interval",
type=int,
default=1,
help="interval between saving model weights",
)
parser.add_argument(
"--evaluation_interval",
type=int,
default=1,
help="interval evaluations on validation set",
)
# parser.add_argument(
# "--compute_map", default=False, help="if True computes mAP every tenth batch"
# )
parser.add_argument(
"--multiscale_training", default=True, help="allow for multi-scale training"
)
parser.add_argument(
"--mixup_training", default=True, help="allow for mixup training"
)
parser.add_argument(
"--distributed", default=False, help="allow for distributed training"
)
parser.add_argument(
"--sybn_training",
default=True,
help="allow for synchronized_batch_normalization_training",
)
opt = parser.parse_args()
print(opt)
logger = Logger("logs")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.set_device(opt.local_rank)
world_size = opt.ngpu
torch.distributed.init_process_group(
"nccl", init_method="env://", world_size=world_size, rank=opt.local_rank
)
os.makedirs("output", exist_ok=True)
os.makedirs("checkpoints", exist_ok=True)
# Get data configuration
data_config = parse_data_config(opt.data_config)
train_path = data_config["train"]
valid_path = data_config["valid"]
class_names = load_classes(data_config["names"])
# Initiate model
model = Darknet(opt.model_def).to(device)
# model.apply(weights_init_normal) # train from scratch
# If specified we start from checkpoint
if opt.pretrained_weights:
if opt.pretrained_weights.endswith(".pth"):
model.load_state_dict(torch.load(opt.pretrained_weights))
else:
model.load_darknet_weights(opt.pretrained_weights)
if opt.sybn_training:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if opt.half:
model = model.half()
device = torch.device("cuda:{}".format(opt.local_rank))
model = model.to(device)
if opt.ngpu > 1:
if opt.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[opt.local_rank], output_device=opt.local_rank
)
else:
model = nn.DataParallel(model)
# Get dataloader
dataset = MixUpDataset(train_path, augment=True, multiscale=opt.multiscale_training)
if opt.distributed:
sampler = torch.utils.data.DistributedSampler(dataset)
else:
sampler = torch.utils.data.RandomSampler(dataset)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=opt.batch_size,
num_workers=opt.n_cpu,
sampler=sampler,
pin_memory=True,
collate_fn=dataset.collate_fn,
)
optimizer = torch.optim.Adam(model.parameters())
scheduler = CosineAnnealingLR(optimizer, 200, 0)
metrics = [
"grid_size",
"loss",
"x",
"y",
"w",
"h",
"conf",
"cls",
"cls_acc",
"recall50",
"recall75",
"precision",
"conf_obj",
"conf_noobj",
]
for epoch in range(opt.epochs):
model.train()
start_time = time.time()
scheduler.step()
for batch_i, (imgs, targets) in enumerate(dataloader):
batches_done = len(dataloader) * epoch + batch_i
imgs = Variable(imgs.to(device))
targets = Variable(targets.to(device), requires_grad=False)
loss, outputs = model(imgs, targets)
loss.backward()
if batches_done % opt.gradient_accumulations:
# Accumulates gradient before each step
optimizer.step()
optimizer.zero_grad()
# ----------------
# Log progress
# ----------------
log_str = "\n---- [Epoch %d/%d, Batch %d/%d] ----\n" % (
epoch,
opt.epochs,
batch_i,
len(dataloader),
)
metric_table = [
["Metrics", *[f"YOLO Layer {i}" for i in range(len(model.yolo_layers))]]
]
# Log metrics at each YOLO layer
for i, metric in enumerate(metrics):
formats = {m: "%.6f" for m in metrics}
formats["grid_size"] = "%2d"
formats["cls_acc"] = "%.2f%%"
row_metrics = [
formats[metric] % yolo.metrics.get(metric, 0)
for yolo in model.yolo_layers
]
metric_table += [[metric, *row_metrics]]
# Tensorboard logging
tensorboard_log = []
for j, yolo in enumerate(model.yolo_layers):
for name, metric in yolo.metrics.items():
if name != "grid_size":
tensorboard_log += [(f"{name}_{j+1}", metric)]
tensorboard_log += [("loss", loss.item())]
logger.list_of_scalars_summary(tensorboard_log, batches_done)
log_str += AsciiTable(metric_table).table
log_str += f"\nTotal loss {loss.item()}"
# Determine approximate time left for epoch
epoch_batches_left = len(dataloader) - (batch_i + 1)
time_left = datetime.timedelta(
seconds=epoch_batches_left * (time.time() - start_time) / (batch_i + 1)
)
log_str += f"\n---- ETA {time_left}"
print(log_str)
model.seen += imgs.size(0)
if epoch % opt.evaluation_interval == 0:
print("\n---- Evaluating Model ----")
# Evaluate the model on the validation set
precision, recall, AP, f1, ap_class = evaluate(
model,
path=valid_path,
iou_thres=0.5,
conf_thres=0.5,
nms_thres=0.5,
img_size=opt.img_size,
batch_size=8,
)
evaluation_metrics = [
("val_precision", precision.mean()),
("val_recall", recall.mean()),
("val_mAP", AP.mean()),
("val_f1", f1.mean()),
]
logger.list_of_scalars_summary(evaluation_metrics, epoch)
# Print class APs and mAP
ap_table = [["Index", "Class name", "AP"]]
for i, c in enumerate(ap_class):
ap_table += [[c, class_names[c], "%.5f" % AP[i]]]
print(AsciiTable(ap_table).table)
print(f"---- mAP {AP.mean()}")
if epoch % opt.checkpoint_interval == 0:
torch.save(model.state_dict(), f"weights/yolov3_ckpt_%d.pth" % epoch)