-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata_augment.py
434 lines (363 loc) · 14.2 KB
/
data_augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
"""Data augmentation functionality. Passed as callable transformations to
Dataset classes.
The data augmentation procedures were interpreted from @weiliu89's SSD paper
http://arxiv.org/abs/1512.02325
"""
import torch
from torchvision import transforms
import cv2
import numpy as np
import random
import math
from utils import matrix_iou, visual
# DEBUG = True
DEBUG = False
def _crop(image, boxes, labels, ratios=None):
height, width, _ = image.shape
if len(boxes) == 0:
return image, boxes, labels, ratios
while True:
mode = random.choice(
(
None,
(0.1, None),
(0.3, None),
(0.5, None),
(0.7, None),
(0.9, None),
(None, None),
)
)
if mode is None:
return image, boxes, labels, ratios
min_iou, max_iou = mode
if min_iou is None:
min_iou = float("-inf")
if max_iou is None:
max_iou = float("inf")
for _ in range(50):
scale = random.uniform(0.3, 1.0)
min_ratio = max(0.5, scale * scale)
max_ratio = min(2, 1.0 / scale / scale)
ratio = math.sqrt(random.uniform(min_ratio, max_ratio))
w = int(scale * ratio * width)
h = int((scale / ratio) * height)
l = random.randrange(width - w)
t = random.randrange(height - h)
roi = np.array((l, t, l + w, t + h))
iou = matrix_iou(boxes, roi[np.newaxis])
if not (min_iou <= iou.min() and iou.max() <= max_iou):
continue
image_t = image[roi[1] : roi[3], roi[0] : roi[2]]
centers = (boxes[:, :2] + boxes[:, 2:]) / 2
mask = np.logical_and(roi[:2] < centers, centers < roi[2:]).all(axis=1)
boxes_t = boxes[mask].copy()
labels_t = labels[mask].copy()
if ratios is not None:
ratios_t = ratios[mask].copy()
else:
ratios_t = None
if len(boxes_t) == 0:
continue
boxes_t[:, :2] = np.maximum(boxes_t[:, :2], roi[:2])
boxes_t[:, :2] -= roi[:2]
boxes_t[:, 2:] = np.minimum(boxes_t[:, 2:], roi[2:])
boxes_t[:, 2:] -= roi[:2]
return image_t, boxes_t, labels_t, ratios_t
def _distort(image):
def _convert(image, alpha=1, beta=0):
tmp = image.astype(float) * alpha + beta
tmp[tmp < 0] = 0
tmp[tmp > 255] = 255
image[:] = tmp
image = image.copy()
if random.randrange(2):
_convert(image, beta=random.uniform(-32, 32))
if random.randrange(2):
_convert(image, alpha=random.uniform(0.5, 1.5))
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
if random.randrange(2):
tmp = image[:, :, 0].astype(int) + random.randint(-18, 18)
tmp %= 180
image[:, :, 0] = tmp
if random.randrange(2):
_convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5))
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
return image
def _expand(image, boxes, fill, p):
if random.random() > p:
return image, boxes
height, width, depth = image.shape
for _ in range(50):
scale = random.uniform(1, 4)
min_ratio = max(0.5, 1.0 / scale / scale)
max_ratio = min(2, scale * scale)
ratio = math.sqrt(random.uniform(min_ratio, max_ratio))
ws = scale * ratio
hs = scale / ratio
if ws < 1 or hs < 1:
continue
w = int(ws * width)
h = int(hs * height)
left = random.randint(0, w - width)
top = random.randint(0, h - height)
boxes_t = boxes.copy()
boxes_t[:, :2] += (left, top)
boxes_t[:, 2:] += (left, top)
expand_image = np.empty((h, w, depth), dtype=image.dtype)
expand_image[:, :] = fill
expand_image[top : top + height, left : left + width] = image
image = expand_image
return image, boxes_t
def _mirror(image, boxes):
_, width, _ = image.shape
if random.randrange(2):
image = image[:, ::-1]
boxes = boxes.copy()
boxes[:, 0::2] = width - boxes[:, 2::-2]
return image, boxes
def _random_affine(
img,
targets=None,
degrees=(-10, 10),
translate=(0.1, 0.1),
scale=(0.9, 1.1),
shear=(-2, 2),
borderValue=(127.5, 127.5, 127.5),
):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
border = 0 # width of added border (optional)
# height = max(img.shape[0], img.shape[1]) + border * 2
height, width, _ = img.shape
# Rotation and Scale
R = np.eye(3)
a = random.random() * (degrees[1] - degrees[0]) + degrees[0]
# a += random.choice([-180, -90, 0, 90]) # 90deg rotations added to small rotations
s = random.random() * (scale[1] - scale[0]) + scale[0]
R[:2] = cv2.getRotationMatrix2D(
angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s
)
# Translation
T = np.eye(3)
T[0, 2] = (random.random() * 2 - 1) * translate[0] * img.shape[
0
] + border # x translation (pixels)
T[1, 2] = (random.random() * 2 - 1) * translate[1] * img.shape[
1
] + border # y translation (pixels)
# Shear
S = np.eye(3)
S[0, 1] = math.tan(
(random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180
) # x shear (deg)
S[1, 0] = math.tan(
(random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180
) # y shear (deg)
M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!!
imw = cv2.warpPerspective(
img, M, dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=borderValue
) # BGR order borderValue
# Return warped points also
if targets is not None:
if len(targets) > 0:
n = targets.shape[0]
points = targets[:, 0:4].copy()
area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1])
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
n * 4, 2
) # x1y1, x2y2, x1y2, x2y1
xy = (xy @ M.T)[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = (
np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
)
# apply angle-based reduction
radians = a * math.pi / 180
reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
x = (xy[:, 2] + xy[:, 0]) / 2
y = (xy[:, 3] + xy[:, 1]) / 2
w = (xy[:, 2] - xy[:, 0]) * reduction
h = (xy[:, 3] - xy[:, 1]) * reduction
xy = (
np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2))
.reshape(4, n)
.T
)
# reject warped points outside of image
x1 = np.clip(xy[:, 0], 0, width)
y1 = np.clip(xy[:, 1], 0, height)
x2 = np.clip(xy[:, 2], 0, width)
y2 = np.clip(xy[:, 3], 0, height)
boxes = np.concatenate((x1, y1, x2, y2)).reshape(4, n).T
return imw, boxes, M
else:
return imw
def preproc_for_test(image, input_size, mean, std):
interp_methods = [
cv2.INTER_LINEAR,
cv2.INTER_CUBIC,
cv2.INTER_AREA,
cv2.INTER_NEAREST,
cv2.INTER_LANCZOS4,
]
interp_method = interp_methods[random.randrange(5)]
image = cv2.resize(image, input_size, interpolation=interp_method)
image = image.astype(np.float32)
image = image[:, :, ::-1]
image /= 255.0
if mean is not None:
image -= mean
if std is not None:
image /= std
return image.transpose(2, 0, 1)
class TrainTransform(object):
def __init__(self, p=0.5, rgb_means=None, std=None, max_labels=50):
self.means = rgb_means
self.std = std
self.p = p
self.max_labels = max_labels
def __call__(self, image, targets, input_dim):
boxes = targets[:, :4].copy()
labels = targets[:, 4].copy()
if targets.shape[1] > 5:
mixup = True
ratios = targets[:, -1].copy()
ratios_o = targets[:, -1].copy()
else:
mixup = False
ratios = None
ratios_o = None
lshape = 6 if mixup else 5
if len(boxes) == 0:
targets = np.zeros((self.max_labels, lshape), dtype=np.float32)
image = preproc_for_test(image, input_dim, self.means, self.std)
image = np.ascontiguousarray(image, dtype=np.float32)
return torch.from_numpy(image), torch.from_numpy(targets)
image_o = image.copy()
targets_o = targets.copy()
height_o, width_o, _ = image_o.shape
boxes_o = targets_o[:, :4]
labels_o = targets_o[:, 4]
b_x_o = (boxes_o[:, 2] + boxes_o[:, 0]) * 0.5
b_y_o = (boxes_o[:, 3] + boxes_o[:, 1]) * 0.5
b_w_o = (boxes_o[:, 2] - boxes_o[:, 0]) * 1.0
b_h_o = (boxes_o[:, 3] - boxes_o[:, 1]) * 1.0
boxes_o[:, 0] = b_x_o
boxes_o[:, 1] = b_y_o
boxes_o[:, 2] = b_w_o
boxes_o[:, 3] = b_h_o
boxes_o[:, 0::2] /= width_o
boxes_o[:, 1::2] /= height_o
boxes_o[:, 0::2] *= input_dim[0]
boxes_o[:, 1::2] *= input_dim[1]
# labels_o = np.expand_dims(labels_o,1)
# targets_o = np.hstack((boxes_o,labels_o))
# targets_o = np.hstack((labels_o,boxes_o))
image_t = _distort(image)
if self.means is not None:
fill = [m * 255 for m in self.means]
fill = fill[::-1]
else:
fill = (127.5, 127.5, 127.5)
image_t, boxes = _expand(image_t, boxes, fill, self.p)
image_t, boxes, labels, ratios = _crop(image_t, boxes, labels, ratios)
image_t, boxes = _mirror(image_t, boxes)
if random.randrange(2):
image_t, boxes, _ = _random_affine(image_t, boxes, borderValue=fill)
height, width, _ = image_t.shape
if DEBUG:
image_t = np.ascontiguousarray(image_t, dtype=np.uint8)
img = visual(image_t, boxes, labels)
cv2.imshow("DEBUG", img)
cv2.waitKey(0)
image_t = preproc_for_test(image_t, input_dim, self.means, self.std)
boxes = boxes.copy()
b_x = (boxes[:, 2] + boxes[:, 0]) * 0.5
b_y = (boxes[:, 3] + boxes[:, 1]) * 0.5
b_w = (boxes[:, 2] - boxes[:, 0]) * 1.0
b_h = (boxes[:, 3] - boxes[:, 1]) * 1.0
boxes[:, 0] = b_x
boxes[:, 1] = b_y
boxes[:, 2] = b_w
boxes[:, 3] = b_h
boxes[:, 0::2] /= width
boxes[:, 1::2] /= height
boxes[:, 0::2] *= input_dim[0]
boxes[:, 1::2] *= input_dim[1]
mask_b = np.minimum(boxes[:, 2], boxes[:, 3]) > 6
# mask_b= (boxes[:,2]*boxes[:,3]) > 32**2
# mask_b= (boxes[:,2]*boxes[:,3]) > 48**2
boxes_t = boxes[mask_b]
labels_t = labels[mask_b].copy()
if mixup:
ratios_t = ratios[mask_b].copy()
"""
if len(boxes_t)==0:
targets = np.zeros((self.max_labels,lshape),dtype=np.float32)
image = preproc_for_test(image_o, input_dim, self.means, self.std)
image = np.ascontiguousarray(image, dtype=np.float32)
return torch.from_numpy(image), torch.from_numpy(targets)
"""
# if len(boxes_t)==0 or random.random() > 0.97:
if len(boxes_t) == 0:
image_t = preproc_for_test(image_o, input_dim, self.means, self.std)
boxes_t = boxes_o
labels_t = labels_o
ratios_t = ratios_o
labels_t = np.expand_dims(labels_t, 1)
if mixup:
ratios_t = np.expand_dims(ratios_t, 1)
targets_t = np.hstack((labels_t, boxes_t, ratios_t))
else:
targets_t = np.hstack((labels_t, boxes_t))
padded_labels = np.zeros((self.max_labels, lshape))
padded_labels[range(len(targets_t))[: self.max_labels]] = targets_t[
: self.max_labels
]
padded_labels = np.ascontiguousarray(padded_labels, dtype=np.float32)
image_t = np.ascontiguousarray(image_t, dtype=np.float32)
return torch.from_numpy(image_t), torch.from_numpy(padded_labels)
class ValTransform(object):
"""Defines the transformations that should be applied to test PIL image
for input into the network
dimension -> tensorize -> color adj
Arguments:
resize (int): input dimension to SSD
rgb_means ((int,int,int)): average RGB of the dataset
(104,117,123)
swap ((int,int,int)): final order of channels
Returns:
transform (transform) : callable transform to be applied to test/val
data
"""
def __init__(self, rgb_means=None, std=None, swap=(2, 0, 1)):
self.means = rgb_means
self.swap = swap
self.std = std
# assume input is cv2 img for now
def __call__(self, img, res, input_size):
interp_methods = [
cv2.INTER_LINEAR,
cv2.INTER_CUBIC,
cv2.INTER_AREA,
cv2.INTER_NEAREST,
cv2.INTER_LANCZOS4,
]
interp_method = interp_methods[0]
img = cv2.resize(np.array(img), input_size, interpolation=interp_method).astype(
np.float32
)
img = img[:, :, ::-1]
img /= 255.0
if self.means is not None:
img -= self.means
if self.std is not None:
img /= self.std
img = img.transpose(self.swap)
img = np.ascontiguousarray(img, dtype=np.float32)
return torch.from_numpy(img), torch.zeros(1, 5)