-
Notifications
You must be signed in to change notification settings - Fork 4
/
came.py
665 lines (544 loc) · 28.5 KB
/
came.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import streamlit as st
from streamlit_option_menu import option_menu
import sys
sys.path.append('./student_analysis')
st.markdown("<h1 style='text-align: center; color: #FF5733;'>📚 OKULARY: Empowering Educators with Innovative Solutions </h1>", unsafe_allow_html=True)
selected = option_menu(
menu_title=None,
options= ["Home","Plagiarism Checker","Teacher Resources","Teacher Community","AI Course Outcomes and Answer Checking","Student Performance Tracking"],
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "0!important"},
"icon": {"color": "#FF5733", "font-size": "12px"},
"nav-link": {"font-size": "10px", "text-align": "left", "margin":"0px", "--hover-color": "#eee"},
"nav-link-selected": {"background-color": "#FF5733"},
}
)
if selected == 'Home':
st.markdown('''
Welcome to **OKULARY**, the ultimate teacher helper website designed to revolutionize the teaching experience. Our platform is built to address the diverse needs of educators by providing a comprehensive suite of resources, teaching methodologies, community support, AI-driven assessments, and performance analytics.
🎯 Our aim is to develop an all-encompassing educational platform tailored for teachers, providing comprehensive resources, teaching methodologies, community support, AI-driven assessments, and performance analytics.
🔧 Our platform is designed to empower educators with the tools and resources they need to excel in their profession. Whether you're a seasoned teacher looking for new teaching strategies or a new teacher seeking guidance, **OKULARY** has something for everyone. Sign up now and start your journey towards becoming a more effective and successful educator.''')
st.markdown('''
## **Key Features:**
- **📚 Resource Repository:** Access to a vast repository of educational resources.
- **📝 Teaching Methodologies:** Guidance on effective teaching techniques and methodologies.
- **👩🏫 Teacher Community:** A supportive online community for collaboration and sharing experiences.
- **🤖 AI Course Outcomes and Answer Checking:** Automated assessment of course outcomes and answer checking using AI.
- **🕵️♂️ Cheating and Malpractice Detection:** AI-powered tools to detect cheating and malpractice.
- **📊 Student Performance Tracking:** Monitoring and tracking individual student performance.
- **📈 Class Performance Analytics:** Data analytics to analyze class performance trends and patterns.
- **👀 AI Class Monitoring:** Innovative system to monitor student attentiveness and manage attendance using AI technology.
''')
st.markdown('''
## **Get Started with OKULARY Today!**
Join **OKULARY** today and take your teaching to the next level. Our platform is designed to empower educators with the tools and resources they need to excel in their profession. Whether you're a seasoned teacher looking for new teaching strategies or a new teacher seeking guidance, **OKULARY** has something for everyone. Sign up now and start your journey towards becoming a more effective and successful educator.''')
elif selected == 'Plagiarism Checker':
import os
import glob
import PyPDF2
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import zipfile
import shutil
import streamlit as st
from zipfile import ZipFile
from PyPDF2 import PdfReader
from difflib import SequenceMatcher
# Color Scheme
# PAGE_BG_COLOR = "#8CB9BD"
# CONTENT_BG_COLOR = "#ECB159"
# TEXT_COLOR = "#ECB159"
def calculate_similarity(text1, text2):
return SequenceMatcher(None, text1, text2).ratio()
def extract_text_from_pdf(file):
pdf_reader = PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def process_zip(zip_file):
with ZipFile(zip_file, 'r') as zip_ref:
texts = []
for file_name in zip_ref.namelist():
if file_name.endswith('.pdf'):
with zip_ref.open(file_name) as file:
text = extract_text_from_pdf(file)
texts.append(text)
return texts
def read_pdf(file_path):
"""
Read text content from a PDF file.
Args:
file_path (str): Path to the PDF file.
Returns:
str: Text content of the PDF.
"""
text = ""
with open(file_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
for page_num in range(len(reader.pages)):
text += reader.pages[page_num].extract_text()
return text
def text_similarity(text1, text2):
"""
Compute the cosine similarity between two texts.
Args:
text1 (str): The first text.
text2 (str): The second text.
Returns:
float: The cosine similarity between the two texts.
"""
# Create a CountVectorizer instance
vectorizer = CountVectorizer().fit_transform([text1, text2])
# Calculate cosine similarity
similarity = cosine_similarity(vectorizer)
# Since there are only 2 texts, similarity[0, 1] or similarity[1, 0] gives the similarity
return similarity[0, 1]
def compare_pdfs(pdf_file1, pdf_file2):
"""
Compare two PDF files for similarity.
Args:
pdf_file1 (str): Path to the first PDF file.
pdf_file2 (str): Path to the second PDF file.
"""
text1 = read_pdf(pdf_file1)
text2 = read_pdf(pdf_file2)
file1 = pdf_file1.split('/')[-1]
file2 = pdf_file2.split('/')[-1]
similarity_score = text_similarity(text1, text2)
if similarity_score > 0.75:
st.write(f"Similarity between '{file1}' and '{file2}': {similarity_score}")
if similarity_score > 0.9:
st.write(f"Complete plagiarism detected between '{file1}' and '{file2}'!")
else:
st.write(f"Potential plagiarism detected between '{file1}' and '{file2}'!")
def main(folder_or_zip_path):
"""
Main function to compare PDF files either in a folder or within a zip file.
Args:
folder_or_zip_path (str): Path to the folder containing PDF files or to the zip file.
"""
if folder_or_zip_path.endswith('.zip'):
# Unzip the file
output_folder = './zip_outputs'
unzipped_folder = unzip_file(folder_or_zip_path, output_folder)
folder_path = os.path.join(unzipped_folder, 'pdfs')
else:
folder_path = folder_or_zip_path
# Get all PDF files in the folder
pdf_files = glob.glob(os.path.join(folder_path, "*.pdf"))
num_files = len(pdf_files)
st.write(f"Found {num_files} PDF files in the folder.")
if num_files == 0:
st.write("No PDF files found in the specified folder.")
return
# Compare similarity for all pairs of PDF files
for i in range(num_files):
for j in range(i+1, num_files):
compare_pdfs(pdf_files[i], pdf_files[j])
def unzip_file(zip_file, output_folder):
"""
Unzip a zip file to the specified output folder.
Args:
zip_file (str): Path to the zip file.
output_folder (str): Path to the output folder where the contents will be extracted.
Returns:
str: Path to the folder containing the extracted files.
"""
# Create the output folder if it doesn't exist
os.makedirs(output_folder, exist_ok=True)
# Empty the output folder if it already exists
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
# Extract the zip file
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(output_folder)
return output_folder
def main():
st.title("Plagiarism Detector")
# # Custom CSS to apply background color and color scheme
# st.markdown(f"""
# <style>
# body {{
# background-color: {PAGE_BG_COLOR};
# color: {TEXT_COLOR};
# }}
# .stApp {{
# background-color: {PAGE_BG_COLOR};
# }}
# .stContent {{
# background-color: {CONTENT_BG_COLOR};
# }}
# .stBlockContainer {{
# background-color: {CONTENT_BG_COLOR};
# padding: 10px;
# border-radius: 10px;
# }}
# .stButton:focus {{
# background-color: {CONTENT_BG_COLOR};
# }}
# .stButton:hover {{
# background-color: {CONTENT_BG_COLOR};
# }}
# </style>
# """, unsafe_allow_html=True)
st.markdown("---")
st.header("Upload Documents or Zip File")
col1, col2, col3 = st.columns([2, 1, 2])
with col1:
st.subheader("Upload Individual PDF Documents")
file1 = st.file_uploader("Upload first document", type=['pdf'], key='file1')
file2 = st.file_uploader("Upload second document", type=['pdf'], key='file2')
with col2:
st.markdown("<h2 style='text-align: center; color: #0080ff;'>OR</h2>", unsafe_allow_html=True)
with col3:
st.subheader("Upload Zip File with PDF Documents")
zip_file = st.file_uploader("Upload zip file with documents", type=['zip'])
st.markdown("---")
plagiarism_button = st.button("Calculate Plagiarism", key='calculate_button', help="Click to check for plagiarism")
if plagiarism_button:
if (file1 and file2) or zip_file:
if file1 and file2:
text1 = extract_text_from_pdf(file1)
text2 = extract_text_from_pdf(file2)
similarity_score = calculate_similarity(text1, text2)
st.success("Plagiarism Percentage: {}%".format(round(similarity_score * 100, 2)))
elif zip_file:
texts = process_zip(zip_file)
if texts:
similarity_score = calculate_similarity(texts[0], texts[1])
st.success("Plagiarism Percentage: {}%".format(round(similarity_score * 100, 2)))
else:
st.warning("No .pdf files found in the uploaded zip file or no files uploaded.")
else:
st.warning("Please upload at least two PDF documents or one zip file.")
if __name__ == "__main__":
main()
elif selected == 'AI Class Monitoring':
pass
elif selected == 'Teacher Community':
import streamlit as st
import pandas as pd
from datetime import datetime
csv_file_path = "questions.csv"
def load_questions():
try:
return pd.read_csv(csv_file_path, converters={'Answers': eval})
except FileNotFoundError:
return pd.DataFrame(columns=['Question', 'Upvotes', 'Downvotes', 'Answers'])
def save_data_to_csv(df):
df.to_csv(csv_file_path, index=False)
def upvote_question(index, questions_df):
questions_df.at[index, 'Upvotes'] += 1
save_data_to_csv(questions_df)
def downvote_question(index, questions_df):
questions_df.at[index, 'Downvotes'] += 1
save_data_to_csv(questions_df)
def add_answer(index, answer, questions_df):
questions_df.at[index, 'Answers'].append(answer)
save_data_to_csv(questions_df)
st.success("Answer posted successfully!")
def display_question_with_answers(index, question, upvotes, downvotes, answers, questions_df):
st.markdown(f"<h3 style='color:darkblue;'>{index + 1}. {question}</h3>", unsafe_allow_html=True)
st.markdown(f"👍 **{upvotes}** 👎 **{downvotes}**")
st.markdown("**Answers:**")
if answers:
for ans in answers:
st.markdown(f"- {ans}")
else:
st.markdown("- No answers yet.")
st.markdown('---')
col1, col2 = st.columns([1, 10])
with col1:
upvote_button = st.button(label="👍", key=f'upvote_{index}')
with col2:
downvote_button = st.button(label="👎", key=f'downvote_{index}')
if upvote_button:
upvote_question(index, questions_df)
if downvote_button:
downvote_question(index, questions_df)
answer_key = f'answer_{index}_{datetime.now().strftime("%Y%m%d%H%M%S")}'
answer = st.text_area(label="Your Answer:", key=answer_key)
answer_button = st.button(label="Post Answer", key=f'post_answer_{index}')
if answer_button and answer:
add_answer(index, answer, questions_df)
questions_df = load_questions()
st.markdown(f"- {answer}", unsafe_allow_html=True)
def main():
st.title("Teaching Q&A Forum")
st.markdown("***")
questions_df = load_questions()
st.sidebar.header("Post a New Question")
new_question = st.sidebar.text_area(label="Enter your question here:", height=100)
post_question_button = st.sidebar.button(label="Post Question")
if post_question_button and new_question:
new_row = pd.DataFrame({'Question': [new_question], 'Upvotes': [0], 'Downvotes': [0], 'Answers': [[]]})
questions_df = pd.concat([questions_df, new_row], ignore_index=True)
save_data_to_csv(questions_df)
st.sidebar.success("Question posted successfully!")
st.header("Existing Questions")
for i, row in questions_df.iterrows():
display_question_with_answers(i, row['Question'], row['Upvotes'], row['Downvotes'], row['Answers'], questions_df)
existing_question_index = st.sidebar.selectbox("Select a question to answer:", questions_df.index.tolist())
answer_key = f'answer_{existing_question_index}'
answer_to_existing_question = st.sidebar.text_area(label="Your Answer:", key=answer_key)
post_answer_to_existing_question_button = st.sidebar.button(label="Post Answer", key=f'post_answer_to_existing_question_{existing_question_index}')
if post_answer_to_existing_question_button and answer_to_existing_question:
add_answer(existing_question_index, answer_to_existing_question, questions_df)
questions_df = load_questions()
if __name__ == "__main__":
main()
elif selected == 'Student Performance Tracking':
import streamlit as st
import pandas as pd
import os
# Assuming these are the functions you've defined
from main import (
default_dashboard_class,
default_dashboard_student,
plot_dashboard_class,
plot_dashboard_student,
)
from download_report import create_pdf
# List of student names
student_names = ["Brian Freeman", "Eric Wilson", "Charles Carpenter", "Joseph Lara", "Sara Rivera", "Penny White"]
# List of available subjects
subjects = ['maths', 'computer science', 'reading', 'writing', 'physics']
# Dictionary for options in each mode
student_default_options = {
"Plot Scores for the student": "Plot Scores for the student",
"Plot Individual Semester Progress(Line Plot)": "Plot Individual Semester Progress(Line Plot)",
"Plot Individual Semester Progress (Box Plot)": "Plot Individual Semester Progress (Box Plot)",
"Improvements and Decline of Marks": "Improvements and Decline of Marks",
}
class_default_options = {
"Scores with respect to gender": "Scores with respect to gender",
"Impact of course completion on grades": "Impact of course completion on grades",
"Mean Scores": "Mean Scores",
"Median Scores": "Median Scores",
"Highest Scores": "Highest Scores",
"Lowest Scores": "Lowest Scores",
}
# Streamlit app
def main():
st.title("Student Dashboards")
dashboard_type = st.radio("Choose Dashboard Type", ("Student", "Class"))
if dashboard_type == "Student":
st.subheader("Student Dashboard")
selected_student = st.selectbox("Select Student", student_names)
dashboard_mode = st.radio("Dashboard Mode", ("Default", "Custom"))
st.subheader("Download Student Report")
image_folder = './student_analysis/requested_plots'
pdf_bytes = None
output_file = None
if st.button("Generate Report"):
if selected_student and image_folder:
output_file = create_pdf(selected_student, image_folder)
with open(output_file, "rb") as f:
pdf_bytes = f.read()
if pdf_bytes is not None and output_file is not None:
st.download_button(label="Download Report", data=pdf_bytes, file_name=output_file, mime="application/pdf")
st.success("Report generated successfully!")
if dashboard_mode == "Default":
default_dashboard_student(selected_student)
else:
selected_plots = st.multiselect("Select Plots", list(student_default_options.keys()))
plot_dashboard_student(selected_plots, selected_student, subjects)
else: # Class dashboard
st.subheader("Class Dashboard")
class_mode = st.radio("Dashboard Mode", ("Default", "Custom"))
subject = st.selectbox("Select Subject", subjects)
if class_mode == "Default":
default_dashboard_class(subject)
else:
selected_plots = st.multiselect("Select Plots", list(class_default_options.keys()))
plot_dashboard_class(selected_plots, subject)
st.header("Requested Plots")
image_folder = "./student_analysis/requested_plots"
if os.path.exists(image_folder):
image_files = os.listdir(image_folder)
for image_file in image_files:
if image_file.endswith(('.png', '.jpg', '.jpeg')):
image_path = os.path.join(image_folder, image_file)
st.image(image_path, caption=image_file, use_column_width=True)
else:
st.write("Image folder not found.")
if __name__ == "__main__":
main()
elif selected == 'AI Course Outcomes and Answer Checking':
import streamlit as st
from openai import OpenAI
import json
import os
# Set up OpenAI client
client = OpenAI(api_key='Your API KEY')
# Function to read file contents
def read_file_contents(filename):
with open(filename, 'r') as f:
contents = f.read()
return contents
# Function to generate GPT-3 response
def generate_gpt3_response(text1, text2):
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a helpful assignment grading assistant. at the beginning of every user input, you will be provided with the answers the teachers want followed by ### indicating that the student answers have started. You shall judge the student answers on a priority basis out of the teacher's sample answers and for a lower priority, add your own judgement for the correctness of each answer. Each Answer is worth 5 marks. Return only a json output in the following format {\"grades\":{question_number(integer):marks_allotted to the question(integer)},{\"2\":5}}, for example for the marks of first two questions you can output{\"grades\":{\"1\":4},{\"2\":5}} where the first element of the grades is the question number and the value is the marks allotted"},
{"role": "user", "content": 'Teacher Sample Answers: \n' + text1 + '\n' + '###' + '\n' + 'Student Answers: \n ' + text2},
]
)
output = response.choices[0].message.content
return output
# Function to convert JSON to answer
def json_to_answer(name, json_string):
data = json.loads(json_string)
questions = list(data['grades'].keys())
marks = list(data['grades'].values())
result = f'Name: {name}\n'
for i in range(len(questions)):
result += f'Question No. {i+1}\n'
result += f'Marks: {marks[i]}\n'
result += f'Total Marks: {sum(marks)}'
return result
# Main function for Streamlit app
def main():
st.title("Assignment Grading Assistant")
st.write("Upload the teacher and student files in .txt format")
# File upload
teacher_file = st.file_uploader("Upload Teacher File", type=['txt'])
student_file = st.file_uploader("Upload Student File", type=['txt'])
if teacher_file and student_file:
# Get student name
student_name = os.path.splitext(os.path.basename(student_file.name))[0]
# Grade button
if st.button("Grade"):
# Read file contents
teacher_text = teacher_file.read().decode('utf-8')
student_text = student_file.read().decode('utf-8')
# Generate GPT-3 response
gpt_response = generate_gpt3_response(teacher_text, student_text)
# Convert JSON to answer
answer = json_to_answer(student_name, gpt_response)
# Display answer
st.subheader("Grading Result:")
st.text_area("Result", value=answer, height=400)
# Run the app
if __name__ == "__main__":
main()
elif selected == 'Teacher Resources':
import streamlit as st
import base64
import sqlite3
from openai import OpenAI
conn = sqlite3.connect("your_database.db")
cursor = conn.cursor()
def create_table_if_not_exists():
cursor.execute("""
CREATE TABLE IF NOT EXISTS uploaded_pdfs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
filename TEXT NOT NULL,
data BLOB NOT NULL
)
""")
create_table_if_not_exists()
def faq_section():
st.markdown("<h2 style='color: #ECB159;'>FAQ Section</h2>", unsafe_allow_html=True)
faq = {
"How can I effectively engage my students?": "Engaging students can involve various strategies such as using interactive activities, incorporating technology, and providing real-world examples.",
"What are some tips for classroom management?": "Establishing clear expectations, fostering a positive classroom environment, and implementing consistent discipline strategies can help with classroom management.",
"How can I differentiate instruction to meet the needs of all learners?": "Differentiation involves tailoring instruction to accommodate the diverse learning needs of students. This can include providing varied learning activities, offering flexible grouping, and adjusting the pace of instruction.",
"What are some ways to assess student learning?": "Assessment methods can include quizzes, tests, projects, presentations, and discussions. Formative assessment provides ongoing feedback to guide instruction, while summative assessment evaluates student learning at the end of a unit or course.",
"How can I support student social-emotional development?": "Supporting social-emotional development involves fostering a positive classroom climate, teaching social-emotional skills such as empathy and self-regulation, and providing opportunities for student reflection and expression."
}
for question, answer in faq.items():
with st.expander(question):
st.write(answer)
def youtube_links_section():
st.markdown("<h2 style='color: #ECB159;'>YouTube Links for Teachers</h2>", unsafe_allow_html=True)
st.subheader("Useful YouTube Channels and Videos")
st.write("1. [Teaching Channel](https://www.youtube.com/user/TeachingChannel)", unsafe_allow_html=True)
st.write("2. [Edutopia](https://www.youtube.com/user/edutopia)", unsafe_allow_html=True)
st.write("3. [CrashCourse](https://www.youtube.com/user/crashcourse)", unsafe_allow_html=True)
st.write("4. [TED-Ed](https://www.youtube.com/user/TEDEducation)", unsafe_allow_html=True)
st.write("5. [Khan Academy](https://www.youtube.com/user/khanacademy)", unsafe_allow_html=True)
st.write("6. [National Geographic Education](https://www.youtube.com/user/NatGeoEducation)", unsafe_allow_html=True)
st.write("7. [PBS LearningMedia](https://www.youtube.com/user/PBSLearningMedia)", unsafe_allow_html=True)
st.write("8. [SciShow](https://www.youtube.com/user/scishow)", unsafe_allow_html=True)
def chatbot_section():
client = OpenAI(api_key='YOUR API KEY')
st.markdown("<h2 style='color: #ECB159;'>Teacher Chatbot</h2>", unsafe_allow_html=True)
st.subheader("Ask Questions and Get Answers")
user_input = st.text_input("You:", "")
if st.button("Send"):
with st.spinner("Thinking..."):
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a helpful chat assistant"},
{"role": "user", "content": user_input}
]
)
chatbot_response = response.choices[0].message.content
st.text_area("Chatbot:", chatbot_response)
st.write("Conversation History:")
st.write(f"User: {user_input}")
st.write(f"Chatbot: {chatbot_response}")
def upload_pdf_section():
st.markdown("<h2 style='color: #ECB159;'>Upload PDF</h2>", unsafe_allow_html=True)
uploaded_files = st.file_uploader("Upload PDF", type=["pdf"], accept_multiple_files=True)
uploaded_pdfs = {}
if uploaded_files is not None:
for uploaded_file in uploaded_files:
pdf_data = uploaded_file.getvalue()
filename = uploaded_file.name
cursor.execute("INSERT INTO uploaded_pdfs (filename, data) VALUES (?, ?)", (filename, pdf_data))
conn.commit()
uploaded_pdfs[filename] = pdf_data
return uploaded_pdfs
def display_pdf_from_database(pdf_id):
cursor.execute("SELECT filename, data FROM uploaded_pdfs WHERE id = ?", (pdf_id,))
filename, pdf_data = cursor.fetchone()
st.markdown(f"<h3 style='color: #ECB159;'>{filename}</h3>", unsafe_allow_html=True)
st.markdown(f'<embed src="data:application/pdf;base64,{base64.b64encode(pdf_data).decode()}" width="300" height="300" type="application/pdf">', unsafe_allow_html=True)
def useful_docs_section(uploaded_pdfs):
st.markdown("<h2 style='color: #ECB159;'>Useful Documents for Teachers</h2>", unsafe_allow_html=True)
cursor.execute("SELECT id, filename FROM uploaded_pdfs")
for pdf_id, filename in cursor.fetchall():
display_pdf_from_database(pdf_id)
def main():
st.title("Teacher Resources Page")
st.markdown(
"""
<style>
body {
background-color: #8CB9BD;
color: #ECB159;
font-family: Arial, sans-serif;
}
h1, h2, h3, h4, h5, h6 {
color: #ECB159;
}
.stButton:focus {
background-color: #B67352;
color: #ffffff;
}
.stButton:hover {
background-color: #B67352;
color: #ffffff;
}
.st-expander-content {
background-color: #ECB159;
}
</style>
""",
unsafe_allow_html=True
)
faq_section()
youtube_links_section()
chatbot_section()
uploaded_pdfs = upload_pdf_section()
useful_docs_section(uploaded_pdfs)
conn.close()
if __name__ == "__main__":
main()