-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
351 lines (253 loc) · 11.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from flask import Flask ,render_template,jsonify,url_for,flash,redirect, request
from flask_wtf import FlaskForm
from wtforms import StringField,PasswordField,SubmitField,BooleanField
from wtforms.validators import DataRequired,length,Email,Regexp,EqualTo
from sklearn.linear_model import LinearRegression
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import plotly.graph_objs as go
import json
import requests
from email_validator import validate_email
from datetime import datetime, timedelta
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt
import datetime
from flask_sqlalchemy import SQLAlchemy
import numpy as np
import matplotlib.pyplot as plt
app=Flask(__name__)
app.config['SECRET_KEY']='293b8cad24d6f3600ee5a2d67dc1c3efc48f19d0f84b5c2c229e997409a06d20'
@app.route("/index")
def index():
url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/quotes/latest'
headers = {'X-CMC_PRO_API_KEY': "4116c941-a133-4abf-b6c4-bd6cb321b499"}
parameters_btc = {'symbol': 'BTC'}
response_btc = requests.get(url, headers=headers, params=parameters_btc)
data_btc = response_btc.json()
price_btc = data_btc['data']['BTC']['quote']['USD']['price']
market_cap_btc = data_btc['data']['BTC']['quote']['USD']['market_cap']
parameters_eth = {'symbol': 'ETH'}
response_eth = requests.get(url, headers=headers, params=parameters_eth)
data_eth = response_eth.json()
price_eth = data_eth['data']['ETH']['quote']['USD']['price']
market_cap_eth = data_eth['data']['ETH']['quote']['USD']['market_cap']
parameters_ada = {'symbol': 'ADA'}
response_ada = requests.get(url, headers=headers, params=parameters_ada)
data_ada = response_ada.json()
price_ada = data_ada['data']['ADA']['quote']['USD']['price']
market_cap_ada = data_ada['data']['ADA']['quote']['USD']['market_cap']
return render_template('public/index.html',price_btc=price_btc,price_eth=price_eth,price_ada=price_ada)
@app.route("/about")
def about():
return render_template("public/about.html")
class inscrireform(FlaskForm):
fname = StringField('First Name',validators=[DataRequired(),length(min=2,max=25)])
lname = StringField('Last Name',validators=[DataRequired(),length(min=2,max=25)])
username = StringField('Username',validators=[DataRequired(),length(min=2,max=25)])
email = StringField("Email",validators=[DataRequired(),Email()])
password = PasswordField('Password',validators=[DataRequired(),Regexp("^(?=.*[A-Z])(?=.*[a-z])(?=.*[@$!%*?&_])[A-Za-z\d@$!%*?&_]{8,32}$")])
confirm_password = PasswordField('Confirm_password',validators=[DataRequired(),EqualTo('password')])
submit = SubmitField("Sign Up")
class loginform(FlaskForm):
email = StringField("Email",validators=[DataRequired(),Email()])
password = PasswordField("Password",validators=[DataRequired()])
remember = BooleanField('Remember Me')
submit = SubmitField("Login")
@app.route("/login",methods=["GET","POST"])
def login():
form= loginform()
if form.validate_on_submit():
if form.email.data =='[email protected]' and form.password.data == "PASS??word123":
flash("You have been logged in !!","success")
return redirect("/index")
else :
flash("Login Unsuccessful , please check credentials","danger")
return render_template("public/login.html",form=form)
@app.route("/inscrire",methods=["GET","POST"])
def inscrire():
form= inscrireform()
if form.validate_on_submit():
flash(f"Account created successfully for {form.username.data}","success")
return redirect("/index")
return render_template("public/inscription.html",form=form)
@app.route("/predir/eth")
def predir_eth():
# Charger et nettoyer les données
df = pd.read_csv("ETH-USD.csv")
df = df.dropna()
# Afficher les données visuellement
df.plot(x="Date", y="Close")
plt.xticks(rotation=45)
# Créer le modèle
model = LinearRegression()
# Entraîner le modèle
X = df[['Open', 'High', 'Low', 'Volume']]
X = X[:int(len(df)-1)]
y = df['Close']
y = y[:int(len(df)-1)]
model.fit(X, y) # Entraînement du modèle
# Faire les prédictions
new_data = df[['Open', 'High', 'Low', 'Volume']].tail(1)
prediction = model.predict(new_data)
actual_price = df[['Close']].tail(1).values[0][0]
# Obtenir le prix actuel du Bitcoin via une API
url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/quotes/latest'
headers = {'X-CMC_PRO_API_KEY': "4116c941-a133-4abf-b6c4-bd6cb321b499"}
parameters_btc = {'symbol': 'ETH'}
response_btc = requests.get(url, headers=headers, params=parameters_btc)
data_btc = response_btc.json()
price_btc = data_btc['data']['ETH']['quote']['USD']['price']
market_cap_btc = data_btc['data']['ETH']['quote']['USD']['market_cap']
difference = price_btc - prediction
current_date = datetime.datetime.now()
return render_template("public/ethereum.html", prediction=prediction, actual_price=actual_price, price_btc=price_btc, difference=difference, current_date=current_date)
@app.route("/prediction",methods=['POST'])
def prediction():
return render_template("public/prediction.html")
@app.route("/bitcoinRF")
def bitcoinRF():
#collect and clean the data
df = pd.read_csv("btc.csv")
df = df.dropna()
#show the data visually
df.plot(x="Date", y="Close")
plt.xticks(rotation=45)
#Create the model
model = RandomForestRegressor()
#Train the model
X=df[['Open','High', 'Low' , 'Volume']]
X=X[:int(len(df)-1)]
y=df['Close']
y=y[:int(len(df)-1)]
model.fit(X,y) #training model
RandomForestRegressor()
#Test the model
predictions = model.predict(X)
#Make the predictions
new_data=df[['Open','High', 'Low' , 'Volume']].tail(1)
prediction = model.predict(new_data)
#Make the predictions
new_data=df[['Open','High', 'Low' , 'Volume']].tail(1)
prediction = model.predict(new_data)
ActuelPrice=df[['Close']].tail(1).values[0][0]
url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/quotes/latest'
headers = {'X-CMC_PRO_API_KEY': "4116c941-a133-4abf-b6c4-bd6cb321b499"}
parameters_btc = {'symbol': 'BTC'}
response_btc = requests.get(url, headers=headers, params=parameters_btc)
data_btc = response_btc.json()
price_btc = data_btc['data']['BTC']['quote']['USD']['price']
market_cap_btc = data_btc['data']['BTC']['quote']['USD']['market_cap']
difference = price_btc - prediction
current_date = datetime.datetime.now()
return render_template("public/bitcoinRF.html",prediction=prediction,ActuelPrice=ActuelPrice,price_btc=price_btc,difference=difference,current_date=current_date)
@app.route("/ETHRF")
def ETHRF():
#collect and clean the data
df = pd.read_csv("ETH-USD.csv")
df = df.dropna()
#show the data visually
df.plot(x="Date", y="Close")
plt.xticks(rotation=45)
#Create the model
model = RandomForestRegressor()
#Train the model
X=df[['Open','High', 'Low' , 'Volume']]
X=X[:int(len(df)-1)]
y=df['Close']
y=y[:int(len(df)-1)]
model.fit(X,y) #training model
RandomForestRegressor()
#Test the model
predictions = model.predict(X)
#Make the predictions
new_data=df[['Open','High', 'Low' , 'Volume']].tail(1)
prediction = model.predict(new_data)
#Make the predictions
new_data=df[['Open','High', 'Low' , 'Volume']].tail(1)
prediction = model.predict(new_data)
ActuelPrice=df[['Close']].tail(1).values[0][0]
url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/quotes/latest'
headers = {'X-CMC_PRO_API_KEY': "4116c941-a133-4abf-b6c4-bd6cb321b499"}
parameters_btc = {'symbol': 'ETH'}
response_btc = requests.get(url, headers=headers, params=parameters_btc)
data_btc = response_btc.json()
price_btc = data_btc['data']['ETH']['quote']['USD']['price']
market_cap_btc = data_btc['data']['ETH']['quote']['USD']['market_cap']
difference = price_btc - prediction
current_date = datetime.datetime.now()
return render_template("public/ETHRF.html",prediction=prediction,ActuelPrice=ActuelPrice,price_btc=price_btc,difference=difference,current_date=current_date)
@app.route("/bitcoinREGLIN")
def bitcoinREGLIN():
# Charger et nettoyer les données
df = pd.read_csv("btc.csv")
df = df.dropna()
# Afficher les données visuellement
df.plot(x="Date", y="Close")
plt.xticks(rotation=45)
# Créer le modèle
model = LinearRegression()
# Entraîner le modèle
X = df[['Open', 'High', 'Low', 'Volume']]
X = X[:int(len(df)-1)]
y = df['Close']
y = y[:int(len(df)-1)]
model.fit(X, y) # Entraînement du modèle
# Faire les prédictions
new_data = df[['Open', 'High', 'Low', 'Volume']].tail(1)
prediction = model.predict(new_data)
actual_price = df[['Close']].tail(1).values[0][0]
# Obtenir le prix actuel du Bitcoin via une API
url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/quotes/latest'
headers = {'X-CMC_PRO_API_KEY': "4116c941-a133-4abf-b6c4-bd6cb321b499"}
parameters_btc = {'symbol': 'BTC'}
response_btc = requests.get(url, headers=headers, params=parameters_btc)
data_btc = response_btc.json()
price_btc = data_btc['data']['BTC']['quote']['USD']['price']
market_cap_btc = data_btc['data']['BTC']['quote']['USD']['market_cap']
difference = price_btc - prediction
current_date = datetime.datetime.now()
return render_template("public/bitcoinREGLIN.html", prediction=prediction, actual_price=actual_price, price_btc=price_btc, difference=difference, current_date=current_date)
@app.route("/bitcoinREGLINcinqJ")
def bitcoinREGLINcinqJ():
# Charger et nettoyer les données
df = pd.read_csv("btc.csv")
df = df.dropna()
# Afficher les données visuellement
df.plot(x="Date", y="Close")
plt.xticks(rotation=45)
# Créer le modèle
model = LinearRegression()
# Entraîner le modèle
X = df[['Open', 'High', 'Low', 'Volume']]
X = X[:int(len(df)-1)]
y = df['Close']
y = y[:int(len(df)-1)]
model.fit(X, y) # Entraînement du modèle
# Faire les prédictions
new_data = df[['Open', 'High', 'Low', 'Volume']].tail(1)
prediction = model.predict(new_data)
actual_price = df[['Close']].tail(1).values[0][0]
# Faire les prédictions pour les cinq prochains jours
next_five_days = pd.date_range(start=df['Date'].iloc[-1], periods=6)[1:]
next_five_days_data = np.repeat(new_data.values, 5, axis=0)
next_five_days_predictions = model.predict(next_five_days_data)
# Créer un DataFrame pour stocker les dates et les prédictions
predictions_df = pd.DataFrame({'Date': next_five_days, 'Prediction': next_five_days_predictions})
# Créer les données de trace pour le graphique matplotlib
dates = predictions_df['Date']
predictions = predictions_df['Prediction']
# Afficher le graphique
plt.figure(figsize=(10, 6))
plt.plot(dates, predictions, marker='o')
plt.title('Bitcoin Price Predictions for the Next 5 Days')
plt.xlabel('Date')
plt.ylabel('Prediction')
plt.xticks(rotation=45)
plt.tight_layout()
# Sauvegarder le graphique dans un fichier
plt.savefig('image.png')
return render_template("public/bitcoinREGLINcinqJ.html",predictions=predictions_df)
if __name__ == "__main__":
app.run()