-
Notifications
You must be signed in to change notification settings - Fork 0
/
backprop.py
75 lines (59 loc) · 2.59 KB
/
backprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
from data_prep import features, targets, features_test, targets_test
np.random.seed(21)
def sigmoid(x):
"""
Calculate sigmoid
"""
return 1 / (1 + np.exp(-x))
# Hyperparameters
n_hidden = 2 # number of hidden units
epochs = 900
learnrate = 0.005
n_records, n_features = features.shape
last_loss = None
# Initialize weights
weights_input_hidden = np.random.normal(scale=1 / n_features ** .5, size=(n_features, n_hidden))
weights_hidden_output = np.random.normal(scale=1 / n_features ** .5, size=n_hidden)
for e in range(epochs):
del_w_input_hidden = np.zeros(weights_input_hidden.shape)
del_w_hidden_output = np.zeros(weights_hidden_output.shape)
for x, y in zip(features.values, targets):
## Forward pass ##
# TODO: Calculate the output
hidden_input = np.dot(x, weights_input_hidden)
hidden_output = sigmoid(hidden_input)
output = sigmoid(np.dot(hidden_output, weights_hidden_output))
## Backward pass ##
# TODO: Calculate the network's prediction error
error = y - output
# TODO: Calculate error term for the output unit
output_error_term = error * output * (1 - output)
## propagate errors to hidden layer
# TODO: Calculate the hidden layer's contribution to the error
hidden_error = np.dot(output_error_term, weights_hidden_output)
# TODO: Calculate the error term for the hidden layer
hidden_error_term = hidden_error * hidden_output * (1 - hidden_output)
# TODO: Update the change in weights
del_w_hidden_output += output_error_term * hidden_output
del_w_input_hidden += hidden_error_term * x[:, None]
# TODO: Update weights
weights_input_hidden += learnrate * del_w_input_hidden / n_records
weights_hidden_output += learnrate * del_w_hidden_output / n_records
# Printing out the mean square error on the training set
if e % (epochs / 10) == 0:
hidden_output = sigmoid(np.dot(x, weights_input_hidden))
out = sigmoid(np.dot(hidden_output,
weights_hidden_output))
loss = np.mean((out - targets) ** 2)
if last_loss and last_loss < loss:
print("Train loss: ", loss, " WARNING - Loss Increasing")
else:
print("Train loss: ", loss)
last_loss = loss
# Calculate accuracy on test data
hidden = sigmoid(np.dot(features_test, weights_input_hidden))
out = sigmoid(np.dot(hidden, weights_hidden_output))
predictions = out > 0.5
accuracy = np.mean(predictions == targets_test)
print("Prediction accuracy: {:.3f}".format(accuracy))