forked from IDEA-Research/Grounded-SAM-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
grounded_sam2_tracking_demo_with_continuous_id_plus.py
242 lines (204 loc) · 10.2 KB
/
grounded_sam2_tracking_demo_with_continuous_id_plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import cv2
import torch
import numpy as np
import supervision as sv
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor, build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
from utils.track_utils import sample_points_from_masks
from utils.video_utils import create_video_from_images
from utils.common_utils import CommonUtils
from utils.mask_dictionary_model import MaskDictionaryModel, ObjectInfo
import json
import copy
# This demo shows the continuous object tracking plus reverse tracking with Grounding DINO and SAM 2
"""
Step 1: Environment settings and model initialization
"""
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# init sam image predictor and video predictor model
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
device = "cuda" if torch.cuda.is_available() else "cpu"
print("device", device)
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
sam2_image_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
image_predictor = SAM2ImagePredictor(sam2_image_model)
# init grounding dino model from huggingface
model_id = "IDEA-Research/grounding-dino-tiny"
processor = AutoProcessor.from_pretrained(model_id)
grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
# setup the input image and text prompt for SAM 2 and Grounding DINO
# VERY important: text queries need to be lowercased + end with a dot
text = "car."
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
video_dir = "notebooks/videos/car"
# 'output_dir' is the directory to save the annotated frames
output_dir = "outputs"
# 'output_video_path' is the path to save the final video
output_video_path = "./outputs/output.mp4"
# create the output directory
mask_data_dir = os.path.join(output_dir, "mask_data")
json_data_dir = os.path.join(output_dir, "json_data")
result_dir = os.path.join(output_dir, "result")
CommonUtils.creat_dirs(mask_data_dir)
CommonUtils.creat_dirs(json_data_dir)
# scan all the JPEG frame names in this directory
frame_names = [
p for p in os.listdir(video_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png", ".PNG"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
# init video predictor state
inference_state = video_predictor.init_state(video_path=video_dir)
step = 10 # the step to sample frames for Grounding DINO predictor
sam2_masks = MaskDictionaryModel()
PROMPT_TYPE_FOR_VIDEO = "mask" # box, mask or point
objects_count = 0
frame_object_count = {}
"""
Step 2: Prompt Grounding DINO and SAM image predictor to get the box and mask for all frames
"""
print("Total frames:", len(frame_names))
for start_frame_idx in range(0, len(frame_names), step):
# prompt grounding dino to get the box coordinates on specific frame
print("start_frame_idx", start_frame_idx)
# continue
img_path = os.path.join(video_dir, frame_names[start_frame_idx])
image = Image.open(img_path).convert("RGB")
image_base_name = frame_names[start_frame_idx].split(".")[0]
mask_dict = MaskDictionaryModel(promote_type = PROMPT_TYPE_FOR_VIDEO, mask_name = f"mask_{image_base_name}.npy")
# run Grounding DINO on the image
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
with torch.no_grad():
outputs = grounding_model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.25,
text_threshold=0.25,
target_sizes=[image.size[::-1]]
)
# prompt SAM image predictor to get the mask for the object
image_predictor.set_image(np.array(image.convert("RGB")))
# process the detection results
input_boxes = results[0]["boxes"] # .cpu().numpy()
# print("results[0]",results[0])
OBJECTS = results[0]["labels"]
# prompt SAM 2 image predictor to get the mask for the object
masks, scores, logits = image_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
# convert the mask shape to (n, H, W)
if masks.ndim == 2:
masks = masks[None]
scores = scores[None]
logits = logits[None]
elif masks.ndim == 4:
masks = masks.squeeze(1)
"""
Step 3: Register each object's positive points to video predictor
"""
# If you are using point prompts, we uniformly sample positive points based on the mask
if mask_dict.promote_type == "mask":
mask_dict.add_new_frame_annotation(mask_list=torch.tensor(masks).to(device), box_list=torch.tensor(input_boxes), label_list=OBJECTS)
else:
raise NotImplementedError("SAM 2 video predictor only support mask prompts")
"""
Step 4: Propagate the video predictor to get the segmentation results for each frame
"""
objects_count = mask_dict.update_masks(tracking_annotation_dict=sam2_masks, iou_threshold=0.8, objects_count=objects_count)
frame_object_count[start_frame_idx] = objects_count
print("objects_count", objects_count)
video_predictor.reset_state(inference_state)
if len(mask_dict.labels) == 0:
print("No object detected in the frame, skip the frame {}".format(start_frame_idx))
continue
video_predictor.reset_state(inference_state)
for object_id, object_info in mask_dict.labels.items():
frame_idx, out_obj_ids, out_mask_logits = video_predictor.add_new_mask(
inference_state,
start_frame_idx,
object_id,
object_info.mask,
)
video_segments = {} # output the following {step} frames tracking masks
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state, max_frame_num_to_track=step, start_frame_idx=start_frame_idx):
frame_masks = MaskDictionaryModel()
for i, out_obj_id in enumerate(out_obj_ids):
out_mask = (out_mask_logits[i] > 0.0) # .cpu().numpy()
object_info = ObjectInfo(instance_id = out_obj_id, mask = out_mask[0], class_name = mask_dict.get_target_class_name(out_obj_id), logit=mask_dict.get_target_logit(out_obj_id))
object_info.update_box()
frame_masks.labels[out_obj_id] = object_info
image_base_name = frame_names[out_frame_idx].split(".")[0]
frame_masks.mask_name = f"mask_{image_base_name}.npy"
frame_masks.mask_height = out_mask.shape[-2]
frame_masks.mask_width = out_mask.shape[-1]
video_segments[out_frame_idx] = frame_masks
sam2_masks = copy.deepcopy(frame_masks)
print("video_segments:", len(video_segments))
"""
Step 5: save the tracking masks and json files
"""
for frame_idx, frame_masks_info in video_segments.items():
mask = frame_masks_info.labels
mask_img = torch.zeros(frame_masks_info.mask_height, frame_masks_info.mask_width)
for obj_id, obj_info in mask.items():
mask_img[obj_info.mask == True] = obj_id
mask_img = mask_img.numpy().astype(np.uint16)
np.save(os.path.join(mask_data_dir, frame_masks_info.mask_name), mask_img)
json_data_path = os.path.join(json_data_dir, frame_masks_info.mask_name.replace(".npy", ".json"))
frame_masks_info.to_json(json_data_path)
CommonUtils.draw_masks_and_box_with_supervision(video_dir, mask_data_dir, json_data_dir, result_dir)
print("try reverse tracking")
start_object_id = 0
object_info_dict = {}
for frame_idx, current_object_count in frame_object_count.items():
print("reverse tracking frame", frame_idx, frame_names[frame_idx])
if frame_idx != 0:
video_predictor.reset_state(inference_state)
image_base_name = frame_names[frame_idx].split(".")[0]
json_data_path = os.path.join(json_data_dir, f"mask_{image_base_name}.json")
json_data = MaskDictionaryModel().from_json(json_data_path)
mask_data_path = os.path.join(mask_data_dir, f"mask_{image_base_name}.npy")
mask_array = np.load(mask_data_path)
for object_id in range(start_object_id+1, current_object_count+1):
print("reverse tracking object", object_id)
object_info_dict[object_id] = json_data.labels[object_id]
video_predictor.add_new_mask(inference_state, frame_idx, object_id, mask_array == object_id)
start_object_id = current_object_count
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state, max_frame_num_to_track=step*2, start_frame_idx=frame_idx, reverse=True):
image_base_name = frame_names[out_frame_idx].split(".")[0]
json_data_path = os.path.join(json_data_dir, f"mask_{image_base_name}.json")
json_data = MaskDictionaryModel().from_json(json_data_path)
mask_data_path = os.path.join(mask_data_dir, f"mask_{image_base_name}.npy")
mask_array = np.load(mask_data_path)
# merge the reverse tracking masks with the original masks
for i, out_obj_id in enumerate(out_obj_ids):
out_mask = (out_mask_logits[i] > 0.0).cpu()
if out_mask.sum() == 0:
print("no mask for object", out_obj_id, "at frame", out_frame_idx)
continue
object_info = object_info_dict[out_obj_id]
object_info.mask = out_mask[0]
object_info.update_box()
json_data.labels[out_obj_id] = object_info
mask_array = np.where(mask_array != out_obj_id, mask_array, 0)
mask_array[object_info.mask] = out_obj_id
np.save(mask_data_path, mask_array)
json_data.to_json(json_data_path)
"""
Step 6: Draw the results and save the video
"""
CommonUtils.draw_masks_and_box_with_supervision(video_dir, mask_data_dir, json_data_dir, result_dir+"_reverse")
create_video_from_images(result_dir, output_video_path, frame_rate=15)