diff --git a/user_data/strategies/MasterMoniGoManiHyperStrategy.py b/user_data/strategies/MasterMoniGoManiHyperStrategy.py index d32333197..d78fe2b9b 100644 --- a/user_data/strategies/MasterMoniGoManiHyperStrategy.py +++ b/user_data/strategies/MasterMoniGoManiHyperStrategy.py @@ -15,7 +15,7 @@ import pandas as pd # noqa import talib.abstract as ta from numpy import timedelta64 -from pandas import DataFrame +from pandas import DataFrame, Series from scipy.interpolate import interp1d from yaml import full_load @@ -25,7 +25,10 @@ from freqtrade.misc import deep_merge_dicts, round_dict from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal from freqtrade.persistence import Trade -from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair, timeframe_to_minutes +from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair, timeframe_to_minutes + +import freqtrade.vendor.qtpylib.indicators as qtpylib +import pandas_ta as pta logger = logging.getLogger(__name__) @@ -208,6 +211,14 @@ class MasterMoniGoManiHyperStrategy(IStrategy, ABC): total_signals_possible[f'{space}_{trend}'] = 0 total_triggers_possible[f'{space}_{trend}'] = 0 + # CoreTrend Hyperoptable parameters + trend_ssl_period = IntParameter(6, 15, default=10, space='buy', optimize=False, load=False) + trend_ssl_atr_coef = DecimalParameter(0, 1, decimals=1, default=0.3, space='buy', optimize=False, load=False) + trend_ssl_mode = IntParameter(1, 17, default=1, space='buy', optimize=False, load=False) + trend_chop_sideway = IntParameter(45, 55, default=50, space='buy', optimize=False, load=False) + trend_bb_sideway = IntParameter(5, 15, default=8, space='buy', optimize=False, load=False) + + class HyperOpt: @staticmethod def generate_roi_table(params: Dict) -> Dict[int, float]: @@ -385,7 +396,7 @@ def populate_frequi_plots(weighted_signal_plots: dict) -> dict: framework_plots = { # Main Plots - Trend Indicator (SAR) 'main_plot': { - 'sar': {'color': '#2c05f6'} + #'sar': {'color': '#2c05f6'} }, # Sub Plots - Each dict defines one additional plot 'subplots': { @@ -393,9 +404,9 @@ def populate_frequi_plots(weighted_signal_plots: dict) -> dict: 'MoniGoMani Core Trend': { 'mgm_trend': {'color': '#7fba3c'} }, - 'Hilbert Transform (Trend vs Cycle)': { - 'ht_trendmode': {'color': '#6f1a7b'} - }, + #'Hilbert Transform (Trend vs Cycle)': { + # 'ht_trendmode': {'color': '#6f1a7b'} + #}, # Sub Plots - Final Buy + Sell Signals 'Buy + Sell Signals Firing': { 'buy': {'color': '#09d528'}, @@ -428,6 +439,10 @@ def _populate_core_trend(self, dataframe: DataFrame, metadata: dict) -> DataFram :return: a Dataframe with all core trend indicators for MoniGoMani """ + """ + # ---------------------------- + # Current Core Trend Detection + # ---------------------------- # Momentum Indicators # ------------------- # Hilbert Transform - Trend vs Cycle @@ -442,6 +457,34 @@ def _populate_core_trend(self, dataframe: DataFrame, metadata: dict) -> DataFram dataframe.loc[(dataframe['ht_trendmode'] == 0) | (dataframe['sar'] == dataframe['close']), 'trend'] = 'sideways' dataframe.loc[(dataframe['ht_trendmode'] == 1) & (dataframe['sar'] < dataframe['close']), 'trend'] = 'upwards' + # ------------------------ + # New Core Trend Detection + # ------------------------ + """ + # Upwards / Downwards movement detection + # -------------------------------------- + # SSL Channels + df_ssl = ssl_channels_atr(dataframe, period=self.trend_ssl_period.value, + coef=self.trend_ssl_atr_coef.value, mode=self.trend_ssl_mode.value) + dataframe = pd.concat([dataframe, df_ssl], axis=1) + + ssl_atr = f'SSLATR_{self.trend_ssl_mode.value}_{self.trend_ssl_period.value}_{self.trend_ssl_atr_coef.value}' + dataframe['trend'] = np.where(dataframe[f'{ssl_atr}_up'] < dataframe[f'{ssl_atr}_down'], 'downwards', 'upwards') + + # Sideways movement detection + # --------------------------- + # Choppiness Index + dataframe['chop'] = pta.chop(dataframe["high"], dataframe["low"], dataframe["close"]) + + # Bollinger Bands + bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) + + dataframe['trend'] = np.where( + (dataframe['chop'] > self.trend_chop_sideway.value) & + ((((bollinger['upper'] - bollinger['lower']) / bollinger['upper']) * 100) < self.trend_bb_sideway.value), + 'sideways', dataframe['trend'] + ) + # Add DataFrame column for visualization in FreqUI when Dry/Live RunMode is detected if self.is_dry_live_run_detected is True: dataframe.loc[(dataframe['trend'] == 'downwards'), 'mgm_trend'] = -1 @@ -529,7 +572,7 @@ def _populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFram # Merge core trend to informative data frame informative = merge_informative_pair( - informative, core_trend[['date', 'ht_trendmode', 'sar', 'trend']].copy(), + informative, core_trend[['date', 'trend']].copy(), self.informative_timeframe, self.core_trend_timeframe, ffill=True) skip_columns = [f'{s}_{self.core_trend_timeframe}' for s in ['date', 'open', 'high', 'low', 'close', 'volume']] @@ -563,7 +606,7 @@ def _populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFram # Merge core trend to main data frame dataframe = merge_informative_pair( - dataframe, core_trend[['date', 'ht_trendmode', 'sar', 'trend', 'mgm_trend']].copy(), + dataframe, core_trend[['date', 'trend', 'mgm_trend']].copy(), self.timeframe, self.core_trend_timeframe, ffill=True) skip_columns = [f'{s}_{self.core_trend_timeframe}' for s in ['date', 'open', 'high', 'low', 'close', 'volume']] @@ -1447,3 +1490,40 @@ def init_hyperopt_epoch(self) -> None: separator_window = (self.separator / 1) - (1 / self.separator) self.separator_candle_weight_reducer = separator_window / self.get_param_value( 'sell___unclogger_trend_lookback_candles_window') + + +def ssl_channels_atr(dataframe, period: int = 7, coef: int = 1, mode: int = 1): + """ + Customized SSL Channel function with ATR Coefficient + """ + ssl_atr = f'SSLATR_{mode}_{period}_{coef}' + df = dataframe.copy() + + # Moving Average modes + ma_modes = {1: 'dema', 2: 'fwma', 3: 'hma', 4: 'linreg', 5: 'midpoint', 6: 'pwma', 7: 'rma', 8: 'sinwma', 9: 'sma', + 10: 'swma', 11: 't3', 12: 'tema', 13: 'trima', 14: 'vidya', 15: 'wma', 16: 'zlma'} + + # Select the currently used Moving Average mode + ma_mode = 'ema' + for mode_key, ma_mode_value in ma_modes.items(): + if mode_key == mode: + ma_mode = ma_mode_value + break + + # Populate indicator data + # ----------------------- + # ATR + df['atr'] = ta.ATR(df, timeperiod=int(period)) + # Moving Average High/Low + df['maHigh'] = pta.ma(ma_mode, dataframe['high'], length=period) + (df['atr'] * coef) + df['maLow'] = pta.ma(ma_mode, dataframe['low'], length=period) - (df['atr'] * coef) + # HLV + df['hlv'] = np.where(df['close'] > df['maHigh'], 1, np.where(df['close'] < df['maLow'], -1, np.NAN)) + df['hlv'] = df['hlv'].ffill() + # SSL Down/Up + df[f'{ssl_atr}_down'] = np.where(df['hlv'] < 0, df['maHigh'], df['maLow']) + df[f'{ssl_atr}_up'] = np.where(df['hlv'] < 0, df['maLow'], df['maHigh']) + + return pd.concat([df[f'{ssl_atr}_down'], df[f'{ssl_atr}_up']], axis=1) +# --------------------------------------------------- +