给定一个 m x n
整数矩阵 matrix
,找出其中 最长递增路径 的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)。
示例 1:
输入:matrix = [[9,9,4],[6,6,8],[2,1,1]]
输出:4
解释:最长递增路径为 [1, 2, 6, 9]
。
示例 2:
输入:matrix = [[3,4,5],[3,2,6],[2,2,1]]
输出:4
解释:最长递增路径是 [3, 4, 5, 6]
。注意不允许在对角线方向上移动。
示例 3:
输入:matrix = [[1]] 输出:1
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
0 <= matrix[i][j] <= 231 - 1
方法一:记忆化搜索
时间复杂度
相似题目:2328. 网格图中递增路径的数目。
class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
@cache
def dfs(i, j):
ans = 1
for a, b in [[-1, 0], [1, 0], [0, 1], [0, -1]]:
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and matrix[x][y] > matrix[i][j]:
ans = max(ans, dfs(x, y) + 1)
return ans
m, n = len(matrix), len(matrix[0])
return max(dfs(i, j) for i in range(m) for j in range(n))
class Solution {
private int[][] memo;
private int[][] matrix;
private int m;
private int n;
public int longestIncreasingPath(int[][] matrix) {
this.matrix = matrix;
m = matrix.length;
n = matrix[0].length;
memo = new int[m][n];
for (int i = 0; i < m; ++i) {
Arrays.fill(memo[i], -1);
}
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans = Math.max(ans, dfs(i, j));
}
}
return ans;
}
private int dfs(int i, int j) {
if (memo[i][j] != -1) {
return memo[i][j];
}
int ans = 1;
int[] dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
ans = Math.max(ans, dfs(x, y) + 1);
}
}
memo[i][j] = ans;
return ans;
}
}
class Solution {
public:
vector<vector<int>> memo;
vector<vector<int>> matrix;
int m;
int n;
int longestIncreasingPath(vector<vector<int>>& matrix) {
m = matrix.size();
n = matrix[0].size();
memo.resize(m, vector<int>(n, -1));
this->matrix = matrix;
int ans = 0;
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
ans = max(ans, dfs(i, j));
return ans;
}
int dfs(int i, int j) {
if (memo[i][j] != -1) return memo[i][j];
int ans = 1;
vector<int> dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j])
ans = max(ans, dfs(x, y) + 1);
}
memo[i][j] = ans;
return ans;
}
};
func longestIncreasingPath(matrix [][]int) int {
m, n := len(matrix), len(matrix[0])
memo := make([][]int, m)
for i := range memo {
memo[i] = make([]int, n)
for j := range memo[i] {
memo[i][j] = -1
}
}
ans := -1
var dfs func(i, j int) int
dfs = func(i, j int) int {
if memo[i][j] != -1 {
return memo[i][j]
}
ans := 1
dirs := []int{-1, 0, 1, 0, -1}
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j] {
ans = max(ans, dfs(x, y)+1)
}
}
memo[i][j] = ans
return ans
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
ans = max(ans, dfs(i, j))
}
}
return ans
}
func max(a, b int) int {
if a > b {
return a
}
return b
}