-
Notifications
You must be signed in to change notification settings - Fork 0
/
07-2-DeepQNetworksInOpenAIGymWithTarget.py
140 lines (110 loc) · 5.17 KB
/
07-2-DeepQNetworksInOpenAIGymWithTarget.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gym
import random
import time
import numpy as np
import tensorflow as tf
from collections import deque
print('Gym:', gym.__version__)
print('TensorFlow', tf.__version__)
#%%
env_name = "CartPole-v0"
env = gym.make(env_name)
print('Observation space: ', env.observation_space)
print('Action space: ', env.action_space)
#%%
class QNetwork():
def __init__(self, state_shape, action_size, tau=0.01):
# since we are using scope, we need to have the following line to reset the graph before defining a new network architecture
tf.reset_default_graph()
self.state_in = tf.placeholder(dtype=tf.float32, shape=[None, *state_shape])
self.action_in = tf.placeholder(dtype=tf.int32, shape=[None])
self.q_target_in = tf.placeholder(dtype=tf.float32, shape=[None])
action_one_hot = tf.one_hot(self.action_in, depth=action_size)
self.q_state_local = self.bulid_model(action_size, 'local')
self.q_state_target = self.bulid_model(action_size, 'target')
self.q_state_action = tf.reduce_sum(tf.multiply(self.q_state_local, action_one_hot), axis=1)
self.loss = tf.reduce_mean(tf.square(self.q_state_action - self.q_target_in))
self.optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(self.loss)
# get each net vars
self.local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='local')
self.target_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='target')
self.updater = tf.group([tf.assign(t, t+tau*(l-t)) for t,l in zip(self.target_vars, self.local_vars)])
def bulid_model(self, action_size, scope):
with tf.variable_scope(scope):
hidden1 = tf.layers.dense(self.state_in, 100, activation=tf.nn.relu)
q_state= tf.layers.dense(hidden1, action_size, activation=None)
return q_state
def update_model(self, sess, state, action, q_target):
feed = {self.state_in:state, self.action_in: action, self.q_target_in:q_target}
sess.run([self.optimizer, self.updater], feed_dict=feed)
def get_q_state(self, sess, state, use_target=False):
q_state_op = self.q_state_target if use_target else self.q_state_local
q_state = sess.run(q_state_op, feed_dict={self.state_in:state})
return q_state
#%%
class ReplayBuffer():
def __init__(self, maxlen):
self.buffer = deque(maxlen=maxlen)
def add(self, experience):
self.buffer.append(experience)
def sample(self, batch_size):
sample_size = min(len(self.buffer), batch_size)
samples = random.choices(self.buffer, k=sample_size)
return map(list, zip(*samples))
#%%%
class DQNAgent():
def __init__(self, env, gamma=0.97, alpha=0.01, buffer_size=1000):
self.epsilon = 1.0
self.gamma = gamma
self.alpha = alpha
self.replay_buffer = ReplayBuffer(maxlen=buffer_size)
self.state_shape = env.observation_space.shape
self.action_size = env.action_space.n
self.q_network = QNetwork(self.state_shape, self.action_size)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
def get_action(self, state):
q_state = self.q_network.get_q_state(self.sess, [state])
action_gready = np.argmax(q_state)
action_random = np.random.randint(self.action_size)
return action_random if random.random() < self.epsilon else action_gready
def train(self, experience, batch_size=50):
self.batch_size = batch_size
self.replay_buffer.add(experience)
states, actions, next_states, rewards, dones = self.replay_buffer.sample(self.batch_size)
q_next_states = self.q_network.get_q_state(self.sess, next_states, use_target=True)
q_next_states[dones] = np.zeros([self.action_size])
q_maxs = np.max(q_next_states, axis=1)
q_targets = rewards + self.gamma * q_maxs
self.q_network.update_model(self.sess, states, actions, q_targets)
if done:
self.epsilon = max(0.99 * self.epsilon, 0.01)
def __del__(self):
self.sess.close()
#%%
agent = DQNAgent(env)
total_reward = []
#%%
n_episodes = 400
for ep in range(n_episodes):
episode_reward = []
state = env.reset()
done = False
while not done:
action = agent.get_action(state)
next_state, reward, done, info = env.step(action)
experience = (state, action, next_state, reward, done)
agent.train(experience)
episode_reward.append(reward)
state = next_state
# env.render()
# time.sleep(0.01)
# print('Current state-action pair is: ({}, {})'.format(state, action))
total_reward.append(np.sum(episode_reward))
if (ep + 1) % 10 == 0:
print('Episode: {}, Episode Reward: {}'.format(ep+1, np.sum(episode_reward)))
print('The sum of all episodes reward: ', np.sum(total_reward))
env.close()
#with tf.variable_scope("q_table", reuse=True):
# weights = agent.sess.run(tf.get_variable("kernel"))
# print(weights)