forked from HongguLiu/Deepfake-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_CNN.py
113 lines (107 loc) · 4.49 KB
/
train_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
import torch.optim as optim
from torch.optim import lr_scheduler
import argparse
import os
import cv2
from network.models import model_selection
from network.mesonet import Meso4, MesoInception4
from dataset.transform import xception_default_data_transforms
from dataset.mydataset import MyDataset
def main():
args = parse.parse_args()
name = args.name
continue_train = args.continue_train
train_list = args.train_list
val_list = args.val_list
epoches = args.epoches
batch_size = args.batch_size
model_name = args.model_name
model_path = args.model_path
output_path = os.path.join('./output', name)
if not os.path.exists(output_path):
os.mkdir(output_path)
torch.backends.cudnn.benchmark=True
train_dataset = MyDataset(txt_path=train_list, transform=xception_default_data_transforms['train'])
val_dataset = MyDataset(txt_path=val_list, transform=xception_default_data_transforms['val'])
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=8)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=8)
train_dataset_size = len(train_dataset)
val_dataset_size = len(val_dataset)
model = model_selection(modelname='xception', num_out_classes=2, dropout=0.5)
if continue_train:
model.load_state_dict(torch.load(model_path))
model = model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08)
scheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
model = nn.DataParallel(model)
best_model_wts = model.state_dict()
best_acc = 0.0
iteration = 0
for epoch in range(epoches):
print('Epoch {}/{}'.format(epoch+1, epoches))
print('-'*10)
model=model.train()
train_loss = 0.0
train_corrects = 0.0
val_loss = 0.0
val_corrects = 0.0
for (image, labels) in train_loader:
iter_loss = 0.0
iter_corrects = 0.0
image = image.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = model(image)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
iter_loss = loss.data.item()
train_loss += iter_loss
iter_corrects = torch.sum(preds == labels.data).to(torch.float32)
train_corrects += iter_corrects
iteration += 1
if not (iteration % 20):
print('iteration {} train loss: {:.4f} Acc: {:.4f}'.format(iteration, iter_loss / batch_size, iter_corrects / batch_size))
epoch_loss = train_loss / train_dataset_size
epoch_acc = train_corrects / train_dataset_size
print('epoch train loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))
model.eval()
with torch.no_grad():
for (image, labels) in val_loader:
image = image.cuda()
labels = labels.cuda()
outputs = model(image)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
val_loss += loss.data.item()
val_corrects += torch.sum(preds == labels.data).to(torch.float32)
epoch_loss = val_loss / val_dataset_size
epoch_acc = val_corrects / val_dataset_size
print('epoch val loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))
if epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = model.state_dict()
scheduler.step()
#if not (epoch % 40):
torch.save(model.module.state_dict(), os.path.join(output_path, str(epoch) + '_' + model_name))
print('Best val Acc: {:.4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
torch.save(model.module.state_dict(), os.path.join(output_path, "best.pkl"))
if __name__ == '__main__':
parse = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parse.add_argument('--name', '-n', type=str, default='fs_xception_c0_299')
parse.add_argument('--train_list', '-tl' , type=str, default = './data_list/FaceSwap_c0_train.txt')
parse.add_argument('--val_list', '-vl' , type=str, default = './data_list/FaceSwap_c0_val.txt')
parse.add_argument('--batch_size', '-bz', type=int, default=64)
parse.add_argument('--epoches', '-e', type=int, default='20')
parse.add_argument('--model_name', '-mn', type=str, default='fs_c0_299.pkl')
parse.add_argument('--continue_train', type=bool, default=False)
parse.add_argument('--model_path', '-mp', type=str, default='./output/df_xception_c0_299/1_df_c0_299.pkl')
main()