diff --git a/content/docs/guides/rapidocr_web/rapidocr_web_desktop.md b/content/docs/guides/rapidocr_web/rapidocr_web_desktop.md index 9dde463f..283efbf8 100644 --- a/content/docs/guides/rapidocr_web/rapidocr_web_desktop.md +++ b/content/docs/guides/rapidocr_web/rapidocr_web_desktop.md @@ -20,6 +20,7 @@ categories: #### 使用步骤 1. 下载对应的zip包 - 目前已有的zip包如下: + ![image](https://github.com/RapidAI/RapidOCR/assets/28639377/e60a6411-7d3d-4063-9e0a-6d85df78de7a) - 下载方式: [Github](https://github.com/RapidAI/RapidOCR/releases/tag/v0.1.5) | [百度网盘](https://pan.baidu.com/s/1Kfk-56I4GoKw8xMZlqUUEw?pwd=rfen) | QQ群共享(群号:755960114) 2. 解压目录如下示例 diff --git a/content/docs/guides/rapidocr_web/rapidocr_web_nuitka.md b/content/docs/guides/rapidocr_web/rapidocr_web_nuitka.md index 7f86e88b..3dde7d4c 100644 --- a/content/docs/guides/rapidocr_web/rapidocr_web_nuitka.md +++ b/content/docs/guides/rapidocr_web/rapidocr_web_nuitka.md @@ -31,6 +31,7 @@ categories: - ⚠️ `rapidocr_onnxruntime>=1.2.8`以后不用再手动修改下面代码,已经做了修改。可以跳过该步。 - 进入`rapidocr-onnxruntime`安装位置,一般在`Lib\site-packages\rapidocr_onnxruntime`或者你设置的虚拟环境下。 - 用编辑器打开`rapid_ocr_api.py`,对**39-52行**进行修改,如下图: + ![image](https://user-images.githubusercontent.com/28639377/227765049-357c6670-56cb-44a4-a32c-f2dde479838e.png) 3. `nuitka`打包 ```bash @@ -38,14 +39,17 @@ categories: nuitka --mingw64 --standalone --show-memory --show-progress --nofollow-import-to=tkinter --output-dir=out ocrweb.py ``` - 如下图所示: + ![image](https://user-images.githubusercontent.com/28639377/227765149-4ba15340-6199-49df-be85-6ef3263f5d2c.png) 4. 拷贝静态文件 - 打包后的文件位于当前位置的`out\ocrweb.dist`目录下,需要将`web`项目和`rapidocr-onnxruntime`相关文件拷贝到此目录。 + ![image](https://user-images.githubusercontent.com/28639377/227765238-f7015ebc-5d71-45bc-9482-9b38c9cc8835.png) - 拷贝`rapidocr_web`目录`static`和`templates`两个文件夹全部拷贝到`out\ocrweb.dist`下 - 在`out\ocrweb.dist`创建`rapidocr_onnxruntime`文件夹,将`Lib\site-packages\rapidocr_onnxruntime`目录下的`config.yaml`和`models`文件夹拷贝到`out\ocrweb.dist\rapidocr_onnxruntime`文件夹内 5. 运行程序 - 进入`out\ocrweb.dist`,直接双击`ocrweb.exe`运行。 + ![image](https://user-images.githubusercontent.com/28639377/227765308-c37eba5f-78e9-479e-a289-cbc3e3463618.png) 6. 打包好的exe下载:[百度网盘](https://pan.baidu.com/s/1nj_1rjuVu76drKBZDY9Bww?pwd=xnu7) | [Google Drive](https://drive.google.com/drive/folders/1okQj22XxLUptyhjKQcRU25eI8Ya693gf?usp=share_link) | [Gitee](https://gitee.com/RapidAI/RapidOCR/releases/download/v1.2.0/ocrweb.dist.rar) diff --git a/content/docs/inference_engine/_index.md b/content/docs/inference_engine/_index.md new file mode 100644 index 00000000..3ab12f62 --- /dev/null +++ b/content/docs/inference_engine/_index.md @@ -0,0 +1,10 @@ +--- +weight: 400 +title: "推理引擎相关" +description: +icon: menu_book +date: 2023-09-13 +lastmod: 2023-09-13 +draft: false +images: [] +--- diff --git a/content/docs/inference_engine/onnxruntime/_index.md b/content/docs/inference_engine/onnxruntime/_index.md new file mode 100644 index 00000000..74774d44 --- /dev/null +++ b/content/docs/inference_engine/onnxruntime/_index.md @@ -0,0 +1,10 @@ +--- +weight: 401 +title: "ONNXRuntime" +description: +icon: menu_book +date: 2023-09-13 +lastmod: 2023-09-13 +draft: false +images: [] +--- diff --git a/content/docs/inference_engine/onnxruntime/infer_optim.md b/content/docs/inference_engine/onnxruntime/infer_optim.md new file mode 100644 index 00000000..46b1ff72 --- /dev/null +++ b/content/docs/inference_engine/onnxruntime/infer_optim.md @@ -0,0 +1,161 @@ +--- +weight: 402 +title: "ONNXRuntime" +description: +icon: menu_book +date: 2023-09-13 +lastmod: 2023-09-13 +draft: false +images: [] +--- + + + +#### 引言 +- 平时推理用的最多是ONNXRuntime,推理引擎的合适调配对推理性能有着至关重要的影响。但是有关于ONNXRuntime参数设置的资料却散落在各个地方,不能形成有效的指导意见。 +- 因此,决定在这一篇文章中来梳理一下相关的设置。 +- 以下参数都是来自`SessionOptions`中 +- 相关测试代码可以前往[AI Studio](https://aistudio.baidu.com/aistudio/projectdetail/6109918?sUid=57084&shared=1&ts=1683438418669)查看 +- 欢迎补充和指出不足之处。 + +#### 推荐常用设置 +```python +import onnxruntime as rt + +sess_options = rt.SessionOptions() +sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL +sess_options.log_severity_level = 4 +sess_options.enable_cpu_mem_arena = False + +# 其他参数,采用默认即可 +``` + +#### [`enable_cpu_mem_arena`](https://onnxruntime.ai/docs/api/python/api_summary.html#onnxruntime.SessionOptions.enable_cpu_mem_arena) +- 作用:启用CPU上的**memory arena**。Arena可能会为将来预先申请很多内存。如果不想使用它,可以设置为`enable_cpu_mem_area=False`,默认是`True` +- 结论:建议关闭 + - 开启之后,占用内存会剧增(5618.3M >> 5.3M),且持续占用,不释放;推理时间只有大约13%提升 + +- 测试环境: + - Python: 3.7.13 + - ONNXRuntime: 1.14.1 +- 测试代码(来自[issue 11627](https://github.com/microsoft/onnxruntime/issues/11627),[enable_cpu_memory_area_example.zip](https://github.com/microsoft/onnxruntime/files/8772315/enable_cpu_memory_area_example.zip)) + ```python + # pip install onnxruntime==1.14.1 + # pip install memory_profiler + + import numpy as np + import onnxruntime as ort + from memory_profiler import profile + + + @profile + def onnx_prediction(model_path, input_data): + ort_sess = ort.InferenceSession(model_path, sess_options=sess_options) + preds = ort_sess.run(output_names=["predictions"], + input_feed={"input_1": input_data})[0] + return preds + + + sess_options = ort.SessionOptions() + sess_options.enable_cpu_mem_arena = False + + input_data = np.load('enable_cpu_memory_area_example/input.npy') + print(f'input_data shape: {input_data.shape}') + model_path = 'enable_cpu_memory_area_example/model.onnx' + + onnx_prediction(model_path, input_data) + ``` +- Windows端 | Mac端 | Linux端 测试情况都大致相同 +
+ + - `enable_cpu_mem_arena=True` + ```bash + (demo) PS G:> python .\test_enable_cpu_mem_arena.py + enable_cpu_mem_arena: True + input_data shape: (32, 200, 200, 1) + Filename: .\test_enable_cpu_mem_arena.py + + Line # Mem usage Increment Occurrences Line Contents + ============================================================= + 7 69.1 MiB 69.1 MiB 1 @profile + 8 def onnx_prediction(model_path, input_data): + 9 77.2 MiB 8.1 MiB 1 ort_sess = ort.InferenceSession(model_path, sess_options=sess_options) + 10 77.2 MiB 0.0 MiB 1 preds = ort_sess.run(output_names=["predictions"], + 11 5695.5 MiB 5618.3 MiB 1 input_feed={"input_1": input_data})[0] + 12 5695.5 MiB 0.0 MiB 1 return preds + ``` + - `enable_cpu_mem_arena=False` + ```bash + (demo) PS G:> python .\test_enable_cpu_mem_arena.py + enable_cpu_mem_arena: False + input_data shape: (32, 200, 200, 1) + Filename: .\test_enable_cpu_mem_arena.py + + Line # Mem usage Increment Occurrences Line Contents + ============================================================= + 7 69.1 MiB 69.1 MiB 1 @profile + 8 def onnx_prediction(model_path, input_data): + 9 76.9 MiB 7.8 MiB 1 ort_sess = ort.InferenceSession(model_path, sess_options=sess_options) + 10 76.9 MiB 0.0 MiB 1 preds = ort_sess.run(output_names=["predictions"], + 11 82.1 MiB 5.3 MiB 1 input_feed={"input_1": input_data})[0] + 12 82.1 MiB 0.0 MiB 1 return preds + ``` + +
+ +#### `enable_profiling` +- 开启这个参数,在推理时,会生成一个类似`onnxruntime_profile__2023-05-07_09-02-15.json`的日志文件,包含详细的性能数据(线程、每个运算符的延迟等)。 +- 建议开启 +- 示例代码: + ```python + import onnxruntime as rt + + sess_options = rt.SessionOptions() + sess_options.enable_profiling = True + ``` + +#### `execution_mode` +- 设置运行模型的模式,包括`rt.ExecutionMode.ORT_SEQUENTIAL`和`rt.ExecutionMode.ORT_PARALLEL`。一个序列执行,一个并行。默认是序列执行 +- **通常来说,当一个模型中有许多分支时,可以设置该参数为`ORT_PARALLEL`来达到更好的表现** +- 当设置`sess_options.execution_mode = rt.ExecutionMode.ORT_PARALLEL`时,可以设置`sess_options.inter_op_num_threads`来控制使用线程的数量,来并行化执行(模型中各个节点之间) + +#### `inter_op_num_threads` +- 设置并行化执行图(跨节点)时,使用的线程数。默认是0,交由onnxruntime自行决定。 +- 示例代码: + ```python + import onnxruntime as rt + + sess_options = rt.SessionOptions() + sess_options.inter_op_num_threads = 2 + ``` + +#### `intra_op_num_threads` +- 设置并行化执行图(内部节点)时,使用的线程数。默认是0,交由onnxruntime自行决定,一般会选择使用设备上所有的核。 +- ⚠️ 这个值并不是越大越好,具体参考[AI Studio](https://aistudio.baidu.com/aistudio/projectdetail/6109918?sUid=57084&shared=1&ts=1683438418669)中的消融实验。 +- 示例代码: + ```python + import onnxruntime as rt + + sess_options = rt.SessionOptions() + sess_options.intra_op_num_threads = 2 + ``` + +#### [`graph_optimization_level`](https://github.com/microsoft/onnxruntime-openenclave/blob/openenclave-public/docs/ONNX_Runtime_Graph_Optimizations.md) +- 运行图时,对图中算子的优化水平。默认是开启全部算子的优化。建议采用默认值即可。 +- 可选的枚举值有:`ORT_DISABLE_ALL | ORT_ENABLE_BASIC | ORT_ENABLE_EXTENDED | ORT_ENABLE_ALL` +- 示例代码: + ```python + import onnxruntime as rt + + sess_options = rt.SessionOptions() + sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL + ``` + +#### FAQ +##### 为什么我的模型在GPU上比在CPU上还要慢? + - 取决于所使用的执行提供者,它可能没有完全支持模型中的所有操作。回落到CPU操作可能会导致性能速度的下降。此外,即使一个操作是由CUDA execution provider实现的,由于性能的原因,它也不一定会把操作分配/放置到CUDA EP上。要想看到ORT决定的位置,请打开verbose日志并查看控制台的输出。 + + +#### 参考资料 +- [ONNX Runtime Performance Tuning](https://github.com/microsoft/onnxruntime-openenclave/blob/openenclave-public/docs/ONNX_Runtime_Perf_Tuning.md) +- [Python API](https://onnxruntime.ai/docs/api/python/api_summary.html) diff --git a/content/docs/inference_engine/onnxruntime/onnxruntime-gpu.md b/content/docs/inference_engine/onnxruntime/onnxruntime-gpu.md new file mode 100644 index 00000000..361053b9 --- /dev/null +++ b/content/docs/inference_engine/onnxruntime/onnxruntime-gpu.md @@ -0,0 +1,105 @@ +--- +weight: 403 +title: "ONNXRuntime GPU版推理" +description: +icon: menu_book +date: 2023-09-13 +lastmod: 2023-09-13 +draft: false +images: [] +--- + +### onnxruntime-gpu版相关说明 +- 目前已知在onnxruntime-gpu上测试过的小伙伴,反映都是GPU推理速度比在CPU上慢很多。关于该问题,已经提了相关issue,具体可参见[onnxruntime issue#13198](https://github.com/microsoft/onnxruntime/issues/13198) + +### 有关`onnxruntime-gpu`推理慢的相关帖子 +- [Pre-allocating dynamic shaped tensor memory for ONNX runtime inference?](https://stackoverflow.com/questions/75553839/pre-allocating-dynamic-shaped-tensor-memory-for-onnx-runtime-inference) + +### 快速查看比较版本 +- 国外小伙伴可以基于[Google Colab](https://colab.research.google.com/gist/SWHL/673c39bf07f4cc4ddcb0e196c3e378e6/testortinfer.ipynb),国内的小伙伴可以基于百度的[AI Studio](https://aistudio.baidu.com/aistudio/projectdetail/4634684?contributionType=1&sUid=57084&shared=1&ts=1664700017761)来查看效果 + +### 自己折腾版 +1. **onnxruntime-gpu**需要严格按照与CUDA、cuDNN版本对应来安装,具体参考[文档](https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements),**这一步关乎后面是否可以成功调用GPU**。 + - 以下是安装示例: + - 所用机器环境情况: + - `nvcc-smi`显示**CUDA Driver API**版本:11.7 + - `nccc -V`显示**CUDA Runtime API**版本:11.6 + - 以上两个版本的对应关系,可参考[博客](https://blog.csdn.net/weixin_39518984/article/details/111406728) + - 具体安装命令如下: + ```bash + conda install cudatoolkit=11.6.0 + conda install cudnn=8.3.2.44 + pip install onnxruntime-gpu==1.12.0 + ``` + - 验证是否可以`onnxruntime-gpu`正常调用GPU + 1. 验证`get_device()`是否可返回GPU + ```python + import onnxruntime as ort + + print(ort.get_device()) + # GPU + ``` + 2. 如果第一步满足了,继续验证`onnxruntime-gpu`加载模型时是否可以调用GPU + ```python + import onnxruntime as ort + + providers = [ + ('CUDAExecutionProvider', { + 'device_id': 0, + 'arena_extend_strategy': 'kNextPowerOfTwo', + 'gpu_mem_limit': 2 * 1024 * 1024 * 1024, + 'cudnn_conv_algo_search': 'EXHAUSTIVE', + 'do_copy_in_default_stream': True, + }), + 'CPUExecutionProvider', + ] + + # download link: https://github.com/openvinotoolkit/openvino/files/9355419/super_resolution.zip + model_path = 'super_resolution.onnx' + session = ort.InferenceSession(model_path, providers=providers) + + print(session.get_providers()) + # 如果输出中含有CUDAExecutionProvider,则证明可以正常调用GPU + # ['CUDAExecutionProvider', 'CPUExecutionProvider'] + ``` +2. 更改[`config.yaml`](https://github.com/RapidAI/RapidOCR/blob/main/python/rapidocr_onnxruntime/config.yaml)中对应部分的参数即可,详细参数介绍参见[官方文档](https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html)。 + ```yaml + use_cuda: true + CUDAExecutionProvider: + device_id: 0 + arena_extend_strategy: kNextPowerOfTwo + gpu_mem_limit: 2 * 1024 * 1024 * 1024 + cudnn_conv_algo_search: EXHAUSTIVE + do_copy_in_default_stream: true + ``` + +3. 推理情况 + 1. 下载基准测试数据集(`test_images_benchmark`),放到`tests/benchmark`目录下。 + - [百度网盘](https://pan.baidu.com/s/1R4gYtJt2G3ypGkLWGwUCKg?pwd=ceuo) | [Google Drive](https://drive.google.com/drive/folders/1IIOCcUXdWa43Tfpsiy6UQJmPsZLnmgFh?usp=sharing) + - 最终目录结构如下: + ```text + tests/benchmark/ + ├── benchmark.py + ├── config_gpu.yaml + ├── config.yaml + └── test_images_benchmark + ``` + 2. 运行以下代码(`python`目录下运行): + ```shell + # CPU + python tests/benchmark/benchmark.py --yaml_path config.yaml + + # GPU + python tests/benchmark/benchmark.py --yaml_path config_gpu.yaml + ``` + 3. 运行相关信息汇总:(以下仅为个人测试情况,具体情况请自行测试) + - 环境 + |测试者|设备|OS|CPU|GPU|onnxruntime-gpu| + |:--|:--|:--|:--|:--|:--| + |[1][zhsunlight](https://github.com/zhsunlight)|宏碁(Acer) 暗影骑士·威N50-N93游戏台式机|Windows|十代i5-10400F 16G 512G SSD|NVIDIA GeForce GTX 1660Super 6G|1.11.0| + |[2][SWHL](https://github.com/SWHL)|服务器|Linux|AMD R9 5950X|NVIDIA GeForce RTX 3090|1.12.1| + - 耗时 + |对应上面序号|CPU总耗时(s)|CPU平均耗时(s/img)|GPU总耗时(s)|GPU平均耗时(s/img)|| + |:---:|:---:|:---:|:---:|:---:|:---:| + |[1]|296.8841|1.18282|646.14667|2.57429| + |[2]|149.35427|0.50504|250.81760|0.99927| \ No newline at end of file diff --git a/content/docs/inference_engine/openvino/_index.md b/content/docs/inference_engine/openvino/_index.md new file mode 100644 index 00000000..b45d4984 --- /dev/null +++ b/content/docs/inference_engine/openvino/_index.md @@ -0,0 +1,10 @@ +--- +weight: 402 +title: "OpenVINO" +description: +icon: menu_book +date: 2023-09-13 +lastmod: 2023-09-13 +draft: false +images: [] +--- diff --git a/content/docs/inference_engine/openvino/infer-gpu.md b/content/docs/inference_engine/openvino/infer-gpu.md new file mode 100644 index 00000000..e122b87c --- /dev/null +++ b/content/docs/inference_engine/openvino/infer-gpu.md @@ -0,0 +1,13 @@ +--- +weight: 403 +title: "OpenVINO GPU推理" +description: +icon: menu_book +date: 2023-09-13 +lastmod: 2023-09-13 +draft: false +images: [] +--- + +- 官方参考文档:[docs](https://docs.openvino.ai/latest/api/ie_python_api/_autosummary/openvino.runtime.Core.html?highlight=compile_model#openvino.runtime.Core.compile_model) +- 考虑到openvino只能使用自家显卡推理,通用性不高,这里暂不作相关配置说明。 \ No newline at end of file diff --git a/content/docs/inference_engine/openvino/infer.md b/content/docs/inference_engine/openvino/infer.md new file mode 100644 index 00000000..cc632269 --- /dev/null +++ b/content/docs/inference_engine/openvino/infer.md @@ -0,0 +1,91 @@ +--- +weight: 403 +title: "OpenVINO推理" +description: +icon: menu_book +date: 2023-09-13 +lastmod: 2023-09-13 +draft: false +images: [] +--- + +- ⚠️ 基于目前`openvino==2022.3.0`版,存在申请内存不释放的问题,这也就意味着当推理图像很大时,推理完之后,内存会一直占用。详情可参见[issue11939](https://github.com/openvinotoolkit/openvino/issues/11939) + +### 安装 +```bash +$ pip install openvino + +# 里面含有mo +$ pip install openvino-dev +``` + +### 模型问题 +- 因为OpenVINO可以直接推理ONNX模型,故这里暂时不作转换,直接推理之前ONNX模型即可 +- 这里仍然给出转换的代码,用作参考: + ```bash + mo --input_model models/ch_PP-OCRv2_det_infer.onnx --output_dir models/IR/ + + mo --input_model models/ch_PP-OCRv2_det_infer.onnx \ + --output_dir models/IR/static \ + --input_shape "[1,3,12128,800]" + ``` + +### 关于OpenVINO +- OpenVINO可以直接推理IR、ONNX和PaddlePaddle模型,具体如下(图来源:[link](https://docs.openvino.ai/latest/openvino_docs_OV_UG_OV_Runtime_User_Guide.html#doxid-openvino-docs-o-v-u-g-o-v-runtime-user-guide)): + +
+ +
+ +- 和ONNXRuntime同时推理同一个ONNX模型,OpenVINO推理速度更快 +- 但是从对比来看,OpenVINO占用内存更大,其原因是拿空间换的时间 + - 当指定`input_shape`在一个区间范围时,推理时内存占用会减少一些 + - 示例命令: + ```bash + mo --input_model models/ch_PP-OCRv2_det_infer.onnx \ + --output_dir models/IR/static \ + --input_shape "[1,3,960:1200,800]" + ``` + +### OpenVINO与ONNXRuntime性能对比 +- 推理设备:`Windows 64位 Intel(R) Core(TM) i5-4210M CPU @ 2.60GHz 2.59 GHz` +- [测试图像宽高](https://drive.google.com/file/d/1iJcGvOVIdUlyOS52bBdvO8uzx8QORo5M/view?usp=sharing): `12119x810` + +| 测试模型 | 推理框架 | 占用内存(3次平均) | 推理时间(3次平均) | +| ------------------------------------ | -------------------- | ----------------- | ----------------- | +| `ch_PP-OCRv2_det_infer.onnx` | `ONNXRuntime=1.10.0` | 0.8G | 5.354s | +| `ch_PP-OCRv2_det_infer.onnx` | `openvino=2022.1.0` | 3.225G | 2.53s | +| `ch_PP-OCRv2_det_infer.xml` FP32 动态图 | `openvino=2022.1.0` | 3.175G | 2.0455s | + + +### OpenVINO与ONNXRuntime推理代码写法对比 +NOTE: 以`ch_ppocr_mobile_v2_det`中推理代码为例子 +- ONNXRuntime + ```python + import onnxruntime + + # 声明 + sess_opt = onnxruntime.SessionOptions() + sess_opt.log_severity_level = 4 + sess_opt.enable_cpu_mem_arena = False + session = onnxruntime.InferenceSession(det_model_path, sess_opt) + input_name = session.get_inputs()[0].name + output_name = session.get_outputs()[0].name + + # 推理 + preds = session.run([output_name], {input_name: img}) + ``` +- OpenVINO + ```python + from openvino.runtime import Core + + # 初始化 + ie = Core() + model_onnx = ie.read_model(det_model_path) + compile_model = ie.compile_model(model=model_onnx, device_name='CPU') + vino_session = compile_model.create_infer_request() + + # 推理 + vino_session.infer(inputs=[img]) + vino_preds = vino_session.get_output_tensor().data + ```