From 66ac1ca35e4f47a7322ff0697bcf45ffcd2d1440 Mon Sep 17 00:00:00 2001 From: SWHL Date: Tue, 25 Jun 2024 21:25:26 +0800 Subject: [PATCH] docs(README): Add instructions for using GPU inference --- README.md | 48 ++++++++++++++++++++++++++++++++++++++++++++---- demo.py | 2 +- 2 files changed, 45 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 6b518b5..c0e655e 100644 --- a/README.md +++ b/README.md @@ -51,7 +51,7 @@ layout_engine = RapidLayout(conf_thres=0.5, model_type="pp_layout_cdla") img = cv2.imread('test_images/layout.png') -boxes, scores, class_names, *elapse = layout_engine(img) +boxes, scores, class_names, elapse = layout_engine(img) ploted_img = VisLayout.draw_detections(img, boxes, scores, class_names) if ploted_img is not None: cv2.imwrite("layout_res.png", ploted_img) @@ -61,10 +61,9 @@ if ploted_img is not None: - 用法: ```bash $ rapid_layout -h - usage: rapid_layout [-h] -img IMG_PATH - [-m {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report}] + usage: rapid_layout [-h] -img IMG_PATH [-m {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report}] [--conf_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report}] - [--iou_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report}] + [--iou_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report}] [--use_cuda] [--use_dml] [-v] options: @@ -77,6 +76,8 @@ if ploted_img is not None: Box threshold, the range is [0, 1] --iou_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report} IoU threshold, the range is [0, 1] + --use_cuda Whether to use cuda. + --use_dml Whether to use DirectML, which only works in Windows10+. -v, --vis Wheter to visualize the layout results. ``` - 示例: @@ -84,6 +85,45 @@ if ploted_img is not None: $ rapid_layout -v -img test_images/layout.png ``` + +### GPU推理 +- 因为版面分析模型输入图像尺寸固定,故可使用`onnxruntime-gpu`来提速。 +- 因为`rapid_layout`库默认依赖是CPU版`onnxruntime`,如果想要使用GPU推理,需要手动安装`onnxruntime-gpu`。 +- 详细使用和评测可参见[AI Studio](https://aistudio.baidu.com/projectdetail/8094594) + +#### 安装 +```bash +pip install rapid_layout +pip uninstall onnxruntime + +# 这里一定要确定onnxruntime-gpu与GPU对应 +# 可参见https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements +pip install onnxruntime-gpu +``` + +#### 使用 +```python +import cv2 +from rapid_layout import RapidLayout +from pathlib import Path + +# 注意:这里需要使用use_cuda指定参数 +layout_engine = RapidLayout(conf_thres=0.5, model_type="pp_layout_cdla", use_cuda=True) + +# warm up +layout_engine("images/12027_5.png") + +elapses = [] +img_list = list(Path('images').iterdir()) +for img_path in img_list: + boxes, scores, class_names, elapse = layout_engine(img_path) + print(f"{img_path}: {elapse}s") + elapses.append(elapse) + +avg_elapse = sum(elapses) / len(elapses) +print(f'avg elapse: {avg_elapse:.4f}') +``` + ### 可视化结果
diff --git a/demo.py b/demo.py index d5e07f3..7e47d5a 100644 --- a/demo.py +++ b/demo.py @@ -10,7 +10,7 @@ img_path = "tests/test_files/layout.png" img = cv2.imread(img_path) -boxes, scores, class_names, *elapse = layout_engine(img) +boxes, scores, class_names, elapse = layout_engine(img) ploted_img = VisLayout.draw_detections(img, boxes, scores, class_names) if ploted_img is not None: cv2.imwrite("layout_res.png", ploted_img)