You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thank you for the tutorial. I have tested it and come with a new version in which I create a Python class in which the functions you created are methods. Feel free to use it if you find it interesting:
import numpy as np
np.random.seed = 0
from scipy.stats import norm
import matplotlib.pyplot as plt
# define original data as a combination of 3 normal distributions
n_samples = 100
# mean and variance
mu1, sigma1 = -5, 1.2
mu2, sigma2 = 5, 1.8
mu3, sigma3 = 0, 1.6
x1 = np.random.normal(loc=mu1, scale=np.sqrt(sigma1), size=n_samples)
x2 = np.random.normal(loc=mu2, scale=np.sqrt(sigma2), size=n_samples)
x3 = np.random.normal(loc=mu3, scale=np.sqrt(sigma3), size=n_samples)
X = np.concatenate((x1, x2, x3))
def plot_pdf(means, variances, alpha=0.5, linestyle='k--', ax=None):
"""
Plot 1-D data and its PDF curve.
"""
if isinstance(means, int) | isinstance(means, float):
means = list(means)
if isinstance(variances, int) | isinstance(variances, float):
variances = list(variances)
if ax is None:
fig, ax = plt.subplots()
for mean, variance in zip(means, variances):
# Plot a historgram
X = norm.rvs(mean, variance, size=1000)
label=r"$\mu={0:.2f} \ ; \ \sigma={1:.2f}$".format(mean, variance)
ax.hist(X, bins=50, density=True, alpha=alpha, label=label)
# Plot the PDF
x = np.linspace(X.min(), X.max(), 1000)
y = norm.pdf(x, mean, variance)
ax.plot(x, y, linestyle)
ax.legend()
ax.set_ylabel('pdf (-)')
# show the PDF of the original gaussian distributions
plot_pdf([mu1, mu2, mu3], [sigma1, sigma2, sigma3])
class GMM():
def __init__(self, X, n_components):
"""Gaussian mixture model of n components
Parameters:
-----------
X : array-like, shape (n_samples,)
The data.
n_components : int
The number of clusters
Returns:
--------
As methods of the class:
pi : array-like, shape (n_components,)
Mixing coefficients of each mixture components
means : array-like, shape (n_components,)
The means of each mixture component.
variances : array-like, shape (n_components,)
The variances of each mixture component.
"""
pi = np.ones(n_components) / n_components
means = np.random.choice(X, n_components)
variances = np.random.random_sample(size=n_components)
self.X = X
self.n_components = n_components
self.pi = pi
self.means = means
self.variances = variances
def expectation(self):
"""Expectation step in the fitting of the Gaussian Mixture Model
Returns
-------
weights : array-like, shape (n_components, n_samples)
"""
weights = np.zeros((self.n_components, len(self.X)))
for c in range(self.n_components):
weights[c,:] = norm(loc=self.means[c], scale=np.sqrt(self.variances[c])).pdf(self.X)
return weights
def maximization(self, weights):
"""Maximization step in the fitting of the Gaussian Mixture Model
Parameters
----------
weights : array-like, shape (n_components,n_samples)
initilized weights array
Returns
-------
It updates the following methods of the class:
pi : array-like, shape (n_components,)
Mixing coefficients of each mixture components
means : array-like, shape (n_components,)
The means of each mixture component.
variances : array-like, shape (n_components,)
The variances of each mixture component.
"""
pi_new, means_new, variances_new = self.pi, self.means, self.variances
r = (gmm.pi * weights.transpose()).transpose()
for c, r_c in enumerate(r):
r_ic = r_c / r.sum(axis=0)
# update mixing coefficient, mean and variance
pi_new[c] = r_ic.mean()
means_new[c] = np.sum(r_ic * self.X) / r_ic.sum()
variances_new[c] = np.sum(r_ic * (self.X - means_new[c])**2) / r_ic.sum()
self.pi, self.means, self.variances = pi_new, means_new, variances_new
def fit(self, n_steps=50, tol=1e-3, plot_intermediate_steps=None):
"""Fit the Gaussian Mixture Model to the training data. It iterates the expectation and maximization steps as many times as desired
Parameters
----------
n_steps: int
Number of iterations to repeat the expectation-maximization steps
plot_intermediate_steps: int
Whether to plot the PDF of the mixture components every n iteration steps
Returns:
--------
It updates the following methods of the class:
pi : array-like, shape (n_components,)
Mixing coefficients of each mixture components
means : array-like, shape (n_components,)
The means of each mixture component.
variances : array-like, shape (n_components,)
The variances of each mixture component.
It generates the following methods to monitor the evolution of the fitting process
means_step : array-like, shape (n_steps, n_components)
The means of each mixture component in each iteration.
variances : array-like, shape (n_steps, n_components)
The variances of each mixture component in each iteration.
"""
# arrays where the evolution of the parameters will be saved
means_ = np.zeros((n_steps + 1, self.n_components)) * np.nan
variances_ = means_.copy()
# save (and plot) initialized parameters
means_[0,:] = self.means
variances_[0,:] = self.variances
if isinstance(plot_intermediate_steps, int):
self.plot_pdf(title=f'initialization')
for step in range(1, n_steps + 1):
# expectation step
weights = self.expectation()
# maximization step
self.maximization(weights)
# save (and plot) updated parameters
means_[step] = self.means
variances_[step] = self.variances
if isinstance(plot_intermediate_steps, int):
if step % plot_intermediate_steps == 0:
self.plot_pdf(title=f'iteration {step}')
# stop fitting if no significant change in the means and variances
means_old, variances_old = means_[step - 1, :], variances_[step - 1, :]
delta_means = np.max(np.abs(self.means - means_old))
delta_variances = np.max(np.abs(self.variances - variances_old))
if (delta_means < tol) & (delta_variances < tol):
print(f'Fitting stopeed at step {step}')
break
self.means_step, self.variances_step = means_, variances_
def plot_pdf(self, ax=None, **kwargs):
"""
Plot the PDF (probability density functions) of the mixture components
Parameters:
-----------
ax : matplotlib.axes
Axes where the plot will be added. If 'None' (default), a new axes is created
"""
means, variances = self.means, self.variances
if isinstance(means, int) | isinstance(means, float):
means = list(means)
if isinstance(variances, int) | isinstance(variances, float):
variances = list(variances)
if ax is None:
fig, ax = plt.subplots(figsize=kwargs.get('figsize', (5, 4)))
for mean, variance in zip(means, variances):
# Plot a historgram
X = norm.rvs(mean, variance, size=1000)
label=r"$\mu={0:.2f} \ ; \ \sigma={1:.2f}$".format(mean, variance)
ax.hist(X, bins=50, density=True, alpha=kwargs.get('alpha', .5), label=label)
# Plot the PDF
x = np.linspace(X.min(), X.max(), 1000)
y = norm.pdf(x, mean, variance)
ax.plot(x, y, ls=kwargs.get('linestyle', '--'), c=kwargs.get('color', 'k'))
ax.legend()
ax.set_ylabel('pdf (-)')
if 'title' in kwargs:
ax.set_title(kwargs['title'])
def plot_fitting(self, **kwargs):
"""It plots the evolution of the paramenters of the mixture components
"""
fig, ax = plt.subplots(nrows=2, sharex=True, figsize=kwargs.get('figsize', (5, 5)))
for c in range(self.n_components):
ax[0].plot(self.means_step[:,c])
ax[1].plot(self.variances_step[:,c])
ax[0].set_ylabel(r"$\mu$", rotation=0)
ax[1].set_ylabel(r"$\sigma$", rotation=0)
ax[1].set_xlabel('iteration')
# declare the Gaussian Mixture Model
gmm = GMM(X, n_components=3)
# fit the model
gmm.fit(plot_intermediate_steps=10)
# plot the evolution of the means and variances
gmm.plot_fitting()
The text was updated successfully, but these errors were encountered:
Hi,
Thank you for the tutorial. I have tested it and come with a new version in which I create a Python class in which the functions you created are methods. Feel free to use it if you find it interesting:
The text was updated successfully, but these errors were encountered: