-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathplugin_stm32.py
314 lines (253 loc) · 10.8 KB
/
plugin_stm32.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# coding=utf-8
'''
@ Summary: Platform: stm32ai
1. check part
2. prepare part
3. convert model
4. load lib
5. load to project
@ Update:
@ file: stm32.py
@ version: 1.0.0
@ Author: [email protected]
@ Date: 2020/12/22 20:55
@ Update: add is_valid_model function
@ Date: 2021/02/18
@ Update: load ai_app_template.c/h & rt_ai_<model_name>_model.c from Documents
to project/applications
在稳定版将会移除该函数
@ Date: 2021/02/23
@ Update: remove template .c/.h
@ Date: 2021/03/12
@ Update: 1. move self.model_path to abspath
2. fix model_name lower.
@ Date: 2021/08/02
'''
import os
import sys
import re
import logging
import datetime
import shutil
from pathlib import Path
path = os.path.dirname(__file__)
sys.path.append(os.path.join(path, '../../'))
from platforms.plugin_stm32.config import *
from platforms.plugin_stm32 import prepare_work
from platforms.plugin_stm32 import plugin_init
from platforms.plugin_stm32 import run_x_cube_ai
from platforms.plugin_stm32 import generate_rt_ai_model_h
from platforms.plugin_stm32 import gen_rt_ai_model_c
def readonly_handler(func, path):
# Change the mode of file, to make it could be used of shutil.rmtree
os.chmod(path, 128)
func(path)
class Plugin(object):
def __init__(self, opt):
self.project = opt.project # project path
# self.model_path = os.path.abspath(opt.model) # model path
self.model_path = opt.model
self.rt_ai_example = opt.rt_ai_example # Documents
self.platform = opt.platform
self.c_model_name = opt.model_name.lower() # c model name
# config.py
self.sup_models = sup_models
self.sup_cpus = sup_cpus
self.stm32_dirs = stm32_dirs # x-cube-ai libraries and c-model dir
self.sconscript_path = sconscript_path
self.sup_modes = sup_modes # support modes:{analyze, validate, generate}
# stm32
self.ext_tools = opt.ext_tools # x-cube-ai: stm32ai
self.cube_ai = opt.cube_ai # x-cube-ai libraries
# self.c_model_name = opt.c_model_name # c model name
# self.stm32_dirs = opt.stm32_dirs # Middlewares X-CUBE-AI
self.network = opt.network # default network name in sample files
self.enable_rt_lib = opt.enable_rt_lib # enable stm32 in <pro>/rtconfig.h
self.clear = opt.clear
# x-cube-ai:stm32ai fixed parameters
self.stm32_ai_fixed_params = [opt.workspace, opt.compress, opt.batches, opt.mode, opt.val_data]
# setting aitools: x-cube-ai output path
self.stm_out = opt.stm_out if opt.stm_out else \
datetime.date.today().strftime("%Y%m%d")
##############
# check part #
##############
# check x-cube-ai libraries
assert "Middlewares" in os.listdir(self.cube_ai), \
IOError("No stm32ai liabaries found, pls check the path...")
# check the model
self.is_valid_model(self.model_path, self.sup_models)
# check the cpu
self.cpu = self.is_valid_cpu(self.project, self.sup_cpus)
def is_valid_model(self, model, sup_models):
""" Determine whether the model supports"""
# model suffix: ".h5"
m_suf = Path(model).suffix
# all supportted models suffix
m_suf_lists = list()
for value in sup_models.values():
m_suf_lists += value
logging.info("The model is '{}'".format(Path(model).name))
if m_suf not in m_suf_lists:
raise IOError("The '{}' is not surpported now...".format(model))
def is_valid_cpu(self, project, sup_cpus, cpu=""):
""" Determine whether the cpu supports"""
project = Path(project)
assert project.exists(), IOError("{} does not exist".format(project))
# get cpu information
sys.path.append(str(project)) # add rt_config.py path
import rtconfig
# CPU = 'cortex-m3'
real_cpu = rtconfig.CPU[7:].upper() # M4 M7 M33
# get chip information
rt_config_path = project / "rtconfig.h"
with open(rt_config_path, "r") as f:
rt_config_text = f.read()
chip = re.findall(r"SOC_SERIES_STM32\w\d", rt_config_text)[0]
platform = chip[16:] # H7 MP1 WL
if real_cpu in sup_cpus:
cpu = real_cpu
elif platform in sup_cpus:
cpu = platform
else:
raise Exception("The cpu is not in supported now...")
logging.info("The cpu is '{}'".format(cpu))
return cpu
def get_lib_path(self, stm_lib, cpu):
""" load lib path """
# select M7 folders
for dir in os.listdir(stm_lib):
if cpu in dir:
lib_path = stm_lib / dir
lib_path = list(filter(lambda path: "PIC" not in path.name, lib_path.iterdir()))[0]
filename = "lib" + lib_path.name if stm_lib.name[:3] == "GCC" \
else lib_path.name
return lib_path, filename
def load_lib(self, stm_out, cube_ai_path, cpu, middle=r"Middlewares/ST/AI"):
""" Loading x-cube-ai libs to <stm_out> from stm32ai package
Args:
stm_out: x_cube_ai output path, str
cube_ai_path: x_cube_ai libraries
path, str
cpu: the project's cpu, str
middle: r"Middlewares/ST/AI", str
Returns:
result: AI Lib files would be copied. list
Raise:
Failed copy Inc/Lib dir from <cube_ai_path> to <stm_out>
"""
# list of aitools_out files
result = list()
target, source = Path(stm_out), Path(cube_ai_path)
# load x-cube-ai package path
source_list = [source / middle / "Inc", source / middle / "Lib"]
target_list = [target / middle / "Inc", target / middle / "Lib"]
# load Inc
if target_list[0].exists(): # if the file have existed, delete it first.
shutil.rmtree(target_list[0], onerror=readonly_handler)
try:
shutil.copytree(source_list[0], target_list[0])
except Exception:
raise Exception("Failed to load Inc???")
# load Lib
for dir in source_list[1].iterdir():
# support IAR GCC MDK 2020/12/11
if dir.name[:3] in {"GCC", "MDK", "ABI"}:
# lib file path, new lib file name
lib_file, filename = self.get_lib_path(dir, cpu)
# maybe there is no lib file exists
if not lib_file:
raise Exception("Failed to load X-CUBE-AI Lib,"
" no matched libs???")
shutil.copyfile(lib_file, target_list[1] / filename)
result.append(filename)
logging.info("Loading stm32ai libs successfully...")
def load_to_project(self, stm_out, project, stm32_dirs):
""" load X-CUBE-AI / Middleware dir to project """
# load X-CUBE-AI & Middleware
for path in stm32_dirs:
source, target = Path(stm_out) / path, Path(project) / path
if target.exists():
shutil.rmtree(target, onerror=readonly_handler)
try:
shutil.copytree(source, target)
except Exception:
raise Exception("Failed to load {}???".format(path))
logging.info("{} loading to project successfully...".format(source.name))
def enable_hal_crc(self, project):
""" enable HAL_CRC_MODULE_ENABLED """
Inc_path = Path(project) / "board"
Inc_path = list(Inc_path.rglob("Inc"))[0]
# stm32l4xx_hal_conf.h
file_path = [path for path in Inc_path.iterdir() if "hal_conf" in path.name]
try:
with file_path[0].open() as fr:
lines = fr.readlines()
except:
raise FileNotFoundError("No hal crc file!!!")
else:
# hal_crc index
index = [i for i in range(len(lines))
if "HAL_CRC_MODULE_ENABLED" in lines[i]][0]
new_line = " ".join(lines[index].split('*')[1:-1])
new_line += "\n"
if "*" in lines[index]:
lines[index] = new_line
with file_path[0].open("w") as fw:
fw.write("".join(lines))
logging.info("Enable HAL_CRC successfully...")
else:
logging.info("Don't need to enable HAL_CRC angain!!!")
def run_plugin(self,):
"""start x-cube-ai:stm32ai running """
# 1. prepare part
# 1.1 stm32 ext_tools env settings
if self.ext_tools:
plugin_init.set_env(self.ext_tools)
# 1.2 create two dirs and SConscripts
prepare_work.pre_sconscript(self.stm_out, self.sconscript_path, self.stm32_dirs)
# 2. convert model
flags_list = run_x_cube_ai.stm32ai(self.model_path, self.stm_out, self.c_model_name,
self.sup_modes, self.stm32_ai_fixed_params)
# 3.1 generate rt_ai_<model_name>_model.h
_ = generate_rt_ai_model_h.rt_ai_model_gen(self.stm_out, self.project,
self.c_model_name, self.rt_ai_example)
# 3.2 load rt_ai_<model_name>_model.c
_ = gen_rt_ai_model_c.load_rt_ai_example(self.project, self.rt_ai_example, self.platform,
self.network, self.c_model_name)
# 4. load lib from <cube_ai> to <stm_out>
# copy lib files from stm to current dir
self.load_lib(self.stm_out, self.cube_ai, self.cpu)
# 5. load <stm_out> to project
self.load_to_project(self.stm_out, self.project, self.stm32_dirs)
# 6. hal crc enable
self.enable_hal_crc(self.project)
# 7. remove x-cube-ai output dirs or not
if os.path.exists(self.stm_out) and self.clear:
shutil.rmtree(self.stm_out, onerror=readonly_handler)
if __name__ == "__main__":
os.chdir("../..")
logging.getLogger().setLevel(logging.INFO)
class Opt():
def __init__(self):
self.project = r"D:\RT-ThreadStudio\workspace\test"
self.cube_ai = "./platforms/stm32/X-CUBE-AI.5.2.0"
self.ext_tools = r"D:\Program Files (x86)\stm32ai-windows-5.2.0\windows"
self.stm_out = "./tmp_cwd"
self.rt_ai_example = "./Documents"
self.model_name = "network"
self.platform = "stm32"
# stm32
self.model = "./Model/keras_mnist.h5"
self.clear = False
self.cpu = "M7"
self.enable_rt_lib = "RT_AI_USE_CUBE"
self.workspace = "./tmp_cwd/stm32ai_ws"
self.compress = 1
self.batches = 10
self.mode = "011"
self.val_data = ''
self.network = "mnist"
opt = Opt()
stm32 = Plugin(opt)
stm32.run_plugin()