-
Notifications
You must be signed in to change notification settings - Fork 57
Open
Description
Hi,
Thanks for this package, I am getting this error with the MAST::zlm function. I am scratching my head and can't find a solution. Any pointer is hugely appreciated.
> zlmCond <- MAST::zlm(
formula = model_formula,
sca = sca,
exprs_value = 'logcounts',
method = "glmer", # note: glmer requires a random effects var
ebayes = F,
parallel = F,
fitArgsD = list(nAGQ = 0)
)
Error in getClassDef(x@superClass, package = packageSlot(x))@virtual :
no applicable method for `@` applied to an object of class "NULL"
> traceback()
22: isVirtualExt(exti)
21: FUN(X[[i]], ...)
20: vapply(ext, F, NA, USE.NAMES = FALSE)
19: .selectSuperClasses(list(dsyMatrix = new("SClassExtension", subClass = structure("dpoMatrix", package = "Matrix"),
superClass = structure("dsyMatrix", package = "Matrix"),
package = "Matrix", coerce = function (from, strict = TRUE)
{
class(from) <- "dsyMatrix"
from
}, test = function (object)
TRUE, replace = function (from, to, value)
{
for (what in c("Dim", "Dimnames", "x", "uplo", "factors"
)) slot(from, what) <- slot(value, what)
from
}, simple = TRUE, by = character(0), dataPart = FALSE, distance = 1),
unpackedMatrix = new("SClassExtension", subClass = structure("dpoMatrix", package = "Matrix"),
superClass = structure("unpackedMatrix", package = "Matrix"),
package = "Matrix", coerce = function (from, strict = TRUE)
{
from <- {
class(from) <- "dsyMatrix"
from
...
18: diag(from, names = FALSE)
17: diag(from, names = FALSE)
16: asMethod(object)
15: as(rr, "corMatrix")
14: vcov.merMod(object@fitC)
13: vcov(object@fitC)
12: vcov(object@fitC)
11: .local(object, ...)
10: vcov(object, "C")
9: vcov(object, "C")
8: withCallingHandlers(expr, warning = function(w) {
if (str_detect(conditionMessage(w), regexp))
invokeRestart("muffleWarning")
})
7: hushWarning(list(coefC = coef(object, which = "C"), vcovC = vcov(object,
"C"), deviance = rowm(deviance(object@fitC), deviance(object@fitD)),
df.null = rowm(nobs(object@fitC), nobs(object@fitD)), dispersion = rowm(sigma(object@fitC),
NA), coefD = coef(object, which = "D"), vcovD = vcov(object,
"D"), loglik = torowm(logLik(object)), converged = torowm(object@fitted)),
"nobs")
6: summarize(obj)
5: summarize(obj)
4: FUN(X[[i]], ...)
3: lapply(listEE, .fitGeneSet)
2: lapply(listEE, .fitGeneSet)
1: MAST::zlm(formula = model_formula, sca = sca, exprs_value = "logcounts",
method = fargs$mast_method, ebayes = fargs$ebayes, parallel = fargs$parallel,
fitArgsD = fit_args_D)
> sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.6 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
locale:
[1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
[4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
[7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
time zone: Europe/London
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] data.table_1.14.8 MAST_1.27.1 Matrix_1.6-5
[4] SummarizedExperiment_1.32.0 SingleCellExperiment_1.24.0 IRanges_2.36.0
[7] GenomicRanges_1.54.1 S4Vectors_0.40.1
loaded via a namespace (and not attached):
[1] R.methodsS3_1.8.2 progress_1.2.2 DirichletReg_0.7-1
[4] DT_0.30 goftest_1.2-3 Biostrings_2.70.1
[7] HDF5Array_1.30.0 vctrs_0.6.4 spatstat.random_3.2-1
[10] RApiSerialize_0.1.2 digest_0.6.33 png_0.1-8
[13] ggrepel_0.9.4 deldir_1.0-9 parallelly_1.36.0
[16] MASS_7.3-60 reshape2_1.4.4 httpuv_1.6.12
[19] foreach_1.5.2 BiocGenerics_0.48.0 xfun_0.41
[22] ggfun_0.1.3 ggpubr_0.6.0 ellipsis_0.3.2
[25] survival_3.5-7 doRNG_1.8.6 memoise_2.0.1
[28] ggbeeswarm_0.7.2 systemfonts_1.0.5 tidytree_0.4.5
[31] zoo_1.8-12 pbapply_1.7-2 R.oo_1.25.0
[34] Formula_1.2-5 prettyunits_1.2.0 rematch2_2.1.2
[37] KEGGREST_1.42.0 promises_1.2.1 httr_1.4.7
[40] rstatix_0.7.2 globals_0.16.2 fitdistrplus_1.1-11
[43] rhdf5filters_1.14.0 stringfish_0.15.8 rhdf5_2.46.0
[46] rstudioapi_0.15.0 miniUI_0.1.1.1 generics_0.1.3
[49] base64enc_0.1-3 babelgene_22.9 curl_5.1.0
[52] zlibbioc_1.48.0 ScaledMatrix_1.10.0 polyclip_1.10-6
[55] GenomeInfoDbData_1.2.11 ExperimentHub_2.10.0 SparseArray_1.2.0
[58] threejs_0.3.3 interactiveDisplayBase_1.40.0 xtable_1.8-4
[61] stringr_1.5.0 doParallel_1.0.17 evaluate_0.23
[64] S4Arrays_1.2.0 BiocFileCache_2.10.1 preprocessCore_1.64.0
[67] hms_1.1.3 irlba_2.3.5.1 qs_0.25.5
[70] colorspace_2.1-0 filelock_1.0.2 hdf5r_1.3.8
[73] apcluster_1.4.11 ROCR_1.0-11 reticulate_1.34.0
[76] spatstat.data_3.0-3 magrittr_2.0.3 lmtest_0.9-40
[79] readr_2.1.4 later_1.3.1 viridis_0.6.4
[82] ggtree_3.10.0 lattice_0.22-5 spatstat.geom_3.2-7
[85] future.apply_1.11.0 scattermore_1.2 XML_3.99-0.14
[88] scuttle_1.12.0 cowplot_1.1.1 matrixStats_1.1.0
[91] RcppAnnoy_0.0.21 pillar_1.9.0 nlme_3.1-163
[94] iterators_1.0.14 compiler_4.3.2 beachmat_2.18.0
[97] stringi_1.7.12 minqa_1.2.6 tensor_1.5
[100] plyr_1.8.9 crayon_1.5.2 abind_1.4-5
[103] scater_1.30.0 ggdendro_0.1.23 gridGraphics_0.5-1
[106] RNOmni_1.0.1.2 locfit_1.5-9.8 bib2df_1.1.2.0
[109] sp_2.1-1 terra_1.7-55 bit_4.0.5
[112] UpSetR_1.4.0 sandwich_3.0-2 dplyr_1.1.3
[115] whisker_0.4.1 codetools_0.2-19 BiocSingular_1.18.0
[118] crosstalk_1.2.0 monocle3_1.3.4 leaflet_2.2.0
[121] paletteer_1.5.0 plotly_4.10.3 mime_0.12
[124] splines_4.3.2 Rcpp_1.0.11 EWCE_1.10.2
[127] dbplyr_2.4.0 sparseMatrixStats_1.14.0 maxLik_1.5-2
[130] knitr_1.45 grr_0.9.5 blob_1.2.4
[133] utf8_1.2.4 BiocVersion_3.18.0 lme4_1.1-35.1
[136] WriteXLS_6.4.0 fs_1.6.3 listenv_0.9.0
[139] DelayedMatrixStats_1.24.0 HGNChelper_0.8.1 english_1.2-6
[142] orthogene_1.8.0 ggsignif_0.6.4 ggplotify_0.1.2
[145] tibble_3.2.1 statmod_1.5.0 tzdb_0.4.0
[148] svglite_2.1.2 pkgconfig_2.0.3 tools_4.3.2
[151] cachem_1.0.8 RSQLite_2.3.2 viridisLite_0.4.2
[154] DBI_1.1.3 rmarkdown_2.25 fastmap_1.1.1
[157] scales_1.2.1 grid_4.3.2 ica_1.0-3
[160] gprofiler2_0.2.2 Seurat_4.4.0 broom_1.0.5
[163] AnnotationHub_3.10.0 FNN_1.1.3.2 patchwork_1.1.3
[166] BiocManager_1.30.22 kBET_0.99.6 dotCall64_1.1-0
[169] carData_3.0-5 RANN_2.6.1 scFlow_0.7.2
[172] yaml_2.3.7 MatrixGenerics_1.14.0 cli_3.6.1
[175] purrr_1.0.2 stats4_4.3.2 leiden_0.4.3
[178] lifecycle_1.0.4 uwot_0.1.16 Biobase_2.62.0
[181] homologene_1.4.68.19.3.27 backports_1.4.1 DropletUtils_1.22.0
[184] BiocParallel_1.36.0 gtable_0.3.4 rjson_0.2.21
[187] ggridges_0.5.4 progressr_0.14.0 parallel_4.3.2
[190] ape_5.7-1 limma_3.58.1 jsonlite_1.8.7
[193] edgeR_4.0.1 miscTools_0.6-28 bitops_1.0-7
[196] ggplot2_3.4.4 bit64_4.0.5 assertthat_0.2.1
[199] WebGestaltR_0.4.6 Rtsne_0.16 yulab.utils_0.1.0
[202] spatstat.utils_3.0-4 BiocNeighbors_1.20.0 SeuratObject_4.1.4
[205] RcppParallel_5.1.7 riverplot_0.10 formattable_0.2.1
[208] dqrng_0.3.1 enrichR_3.2 R.utils_2.12.2
[211] lazyeval_0.2.2 shiny_1.7.5.1 htmltools_0.5.7
[214] sctransform_0.4.1 rappdirs_0.3.3 glue_1.6.2
[217] ewceData_1.10.0 rliger_1.0.0 spam_2.10-0
[220] XVector_0.42.0 RCurl_1.98-1.12 treeio_1.26.0
[223] mclust_6.0.0 gridExtra_2.3 boot_1.3-28.1
[226] humaniformat_0.6.0 igraph_1.5.1 R6_2.5.1
[229] tidyr_1.3.0 forcats_1.0.0 DoubletFinder_2.0.3
[232] cluster_2.1.6 rngtools_1.5.2 Rhdf5lib_1.24.0
[235] aplot_0.2.2 GenomeInfoDb_1.38.0 nloptr_2.0.3
[238] DelayedArray_0.28.0 tidyselect_1.2.0 vipor_0.4.5
[241] xml2_1.3.5 car_3.1-2 AnnotationDbi_1.64.0
[244] future_1.33.0 rsvd_1.0.5 munsell_0.5.0
[247] KernSmooth_2.23-22 htmlwidgets_1.6.2 RColorBrewer_1.1-3
[250] biomaRt_2.58.0 rlang_1.1.2 spatstat.sparse_3.0-3
[253] spatstat.explore_3.2-5 fansi_1.0.5 beeswarm_0.4.0
The file was a little to big to attach here so I uploaded the reproducible data here.
Metadata
Metadata
Assignees
Labels
No labels