-
Notifications
You must be signed in to change notification settings - Fork 0
/
ball_tracking.py
124 lines (102 loc) · 3.44 KB
/
ball_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# USAGE
# python ball_tracking.py --video ball_tracking_example.mp4
# python ball_tracking.py
# import the necessary packages
from collections import deque
from imutils.video import VideoStream
import numpy as np
import argparse
import cv2
import imutils
import time
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type = int, default = 64,
help = "max buffer size")
args=vars(ap.parse_args())
# define the lower and upper boundaries of the "green"
# ball in the HSV color space, then initialize the
# list of tracked points
greenLower=(29, 86, 6)
greenUpper=(64, 255, 255)
pts=deque(maxlen = args["buffer"])
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
vs=VideoStream(src = 0).start()
# otherwise, grab a reference to the video file
else:
vs=cv2.VideoCapture(args["video"])
# allow the camera or video file to warm up
time.sleep(2.0)
# keep looping
while True:
# grab the current frame
frame=vs.read()
# handle the frame from VideoCapture or VideoStream
frame=frame[1] if args.get("video", False) else frame
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if frame is None:
break
# resize the frame, blur it, and convert it to the HSV
# color space
frame=imutils.resize(frame, width = 600)
blurred=cv2.GaussianBlur(frame, (11, 11), 0)
hsv=cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask=cv2.inRange(hsv, greenLower, greenUpper)
mask=cv2.erode(mask, None, iterations = 2)
mask=cv2.dilate(mask, None, iterations = 2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts=cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts=cnts[0] if imutils.is_cv2() else cnts[1]
center=None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c=max(cnts, key = cv2.contourArea)
((x, y), radius)=cv2.minEnclosingCircle(c)
M=cv2.moments(c)
center=(int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
# update the points queue
pts.appendleft(center)
# loop over the set of tracked points
for i in range(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness=int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the frame to our screen
cv2.imshow("Frame", frame)
key=cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# if we are not using a video file, stop the camera video stream
if not args.get("video", False):
vs.stop()
# otherwise, release the camera
else:
vs.release()
# close all windows
cv2.destroyAllWindows()