-
-
Notifications
You must be signed in to change notification settings - Fork 1
Open
Milestone
Description
Description
Implement a flexible tagging system for documents with auto-suggestions based on document content, filename, type, and usage patterns. Allow multiple tags per document with color coding and filtering.
Requirements
- Create tag data structure
- Build tag input component (multi-select)
- Implement tag CRUD operations
- Add auto-suggestion algorithm
- Analyze document content for suggestions
- Parse filename for tag suggestions
- Consider document type for tags
- Learn from user tagging patterns
- Add tag color customization
- Implement tag filtering
- Show tag usage statistics
- Add tag management page
Auto-Suggestion Sources
1. Document Content Analysis
- Extract keywords from resume/CV
- Identify skills mentioned
- Detect job titles
- Find company names
- Recognize programming languages
- Identify certifications
2. Filename Parsing
- Extract company names
- Identify role/position
- Detect version numbers
- Parse date patterns
- Recognize document types
3. Document Type
- Resume → suggest: "resume", "cv", "application"
- Cover Letter → suggest: "cover-letter", "application"
- Certificate → suggest: "certification", "credential"
- Portfolio → suggest: "portfolio", "work-sample"
4. Usage Patterns
- Tags used for similar documents
- Tags used for same company
- Tags used for same position type
- Recently used tags
- Frequently used tags
5. Context
- Application company
- Application position
- Application status
- Related documents
Tag Features
Tag Properties
- Name: String (required)
- Color: From palette
- Category: Group (e.g., Skill, Company, Type)
- Usage Count: Number
- Created: Timestamp
Tag Actions
- Add tag to document
- Remove tag from document
- Create new tag
- Rename tag
- Change tag color
- Merge tags
- Delete tag
- Bulk tag operations
Tag Categories
- Document Type: Resume, Cover Letter, Portfolio, etc.
- Skills: JavaScript, Python, React, etc.
- Companies: Google, Microsoft, etc.
- Roles: Frontend, Backend, Full-Stack, etc.
- Status: Current, Archive, Template, etc.
- Custom: User-defined
Acceptance Criteria
- Can add multiple tags to documents
- Tag input shows auto-suggestions
- Suggestions are relevant and accurate
- Can create new tags inline
- Can customize tag colors
- Tags display as colorful badges
- Can filter documents by tags
- Can filter by multiple tags (AND/OR)
- Tag management page functional
- Can merge duplicate tags
- Tag statistics display correctly
- Tags persist to storage
- Performance good with 500+ tags
Technical Details
Data Structure
interface Tag {
id: string;
name: string;
color: string;
category: TagCategory;
usageCount: number;
createdAt: Date;
}
interface TagSuggestion {
tag: string;
confidence: number; // 0-1
source: 'content' | 'filename' | 'type' | 'pattern' | 'context';
reason: string;
}
type TagCategory =
| 'document-type'
| 'skill'
| 'company'
| 'role'
| 'status'
| 'custom';Files to Create
src/types/tag.tssrc/stores/tagStore.tssrc/components/documents/TagInput.tsxsrc/components/documents/TagBadge.tsxsrc/components/documents/TagManager.tsxsrc/lib/tagSuggestions.tssrc/lib/contentAnalysis.tssrc/hooks/useTags.tssrc/hooks/useTagSuggestions.ts
Suggestion Algorithm
async function generateTagSuggestions(
document: Document,
context?: ApplicationContext
): Promise<TagSuggestion[]> {
const suggestions: TagSuggestion[] = [];
// Analyze content
const contentTags = await analyzeContent(document.file);
suggestions.push(...contentTags);
// Parse filename
const filenameTags = parseFilename(document.name);
suggestions.push(...filenameTags);
// Type-based tags
const typeTags = getTypeBasedTags(document.type);
suggestions.push(...typeTags);
// Pattern-based tags
const patternTags = await analyzeUsagePatterns(document);
suggestions.push(...patternTags);
// Context-based tags
if (context) {
const contextTags = getContextTags(context);
suggestions.push(...contextTags);
}
// Sort by confidence and deduplicate
return deduplicateAndSort(suggestions);
}UI Components
Tag Input
<TagInput
document={document}
suggestions={suggestions}
onAdd={handleAddTag}
onRemove={handleRemoveTag}
onCreate={handleCreateTag}
/>Tag Display
<div className="flex flex-wrap gap-2">
{tags.map(tag => (
<TagBadge
key={tag.id}
tag={tag}
onRemove={() => removeTag(tag.id)}
/>
))}
</div>Tag Filter
<TagFilter
mode="AND" // or "OR"
selectedTags={selectedTags}
onChange={handleFilterChange}
/>Testing Plan
- Unit tests for suggestion algorithm
- Test content analysis accuracy
- Test filename parsing
- Test pattern recognition
- Test tag CRUD operations
- Test tag filtering (AND/OR)
- Test tag management page
- E2E test for tagging workflow
- Performance test with 1000+ tags
Success Metrics
- Suggestion Accuracy: >80% relevant suggestions
- Suggestion Acceptance: >60% of suggestions accepted
- Time Saved: 15 seconds per document
- Tag Coverage: >90% documents have 3+ tags
Related Tasks
- TASK-200: Custom Folder System - 📋 Planned
- TASK-202: Smart Document Organization - 📋 Planned
- TASK-204: Tag-based Smart Views - 💡 Backlog
Notes
- Consider using ML for content analysis in future
- Tag suggestions improve with usage over time
- May add tag hierarchies/relationships later
- Consider tag translation for international users
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels
Type
Projects
Status
No status