-
Notifications
You must be signed in to change notification settings - Fork 922
/
Copy pathsvc_inference.py
241 lines (202 loc) · 8.63 KB
/
svc_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import logging
import sys,os
from pathlib import Path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import torch
import argparse
import numpy as np
from omegaconf import OmegaConf
from scipy.io.wavfile import write
from vits.models import SynthesizerInfer
from pitch import load_csv_pitch
from feature_retrieval import IRetrieval, DummyRetrieval, FaissIndexRetrieval, load_retrieve_index
logger = logging.getLogger(__name__)
def get_speaker_name_from_path(speaker_path: Path) -> str:
suffixes = "".join(speaker_path.suffixes)
filename = speaker_path.name
return filename.rstrip(suffixes)
def create_retrival(cli_args) -> IRetrieval:
if not cli_args.enable_retrieval:
logger.info("infer without retrival")
return DummyRetrieval()
else:
logger.info("load index retrival model")
speaker_name = get_speaker_name_from_path(Path(args.spk))
base_path = Path(".").absolute() / "data_svc" / "indexes" / speaker_name
if cli_args.hubert_index_path:
hubert_index_filepath = cli_args.hubert_index_path
else:
index_name = f"{cli_args.retrieval_index_prefix}hubert.index"
hubert_index_filepath = base_path / index_name
if cli_args.whisper_index_path:
whisper_index_filepath = cli_args.whisper_index_path
else:
index_name = f"{cli_args.retrieval_index_prefix}whisper.index"
whisper_index_filepath = base_path / index_name
return FaissIndexRetrieval(
hubert_index=load_retrieve_index(
filepath=hubert_index_filepath,
ratio=cli_args.retrieval_ratio,
n_nearest_vectors=cli_args.n_retrieval_vectors
),
whisper_index=load_retrieve_index(
filepath=whisper_index_filepath,
ratio=cli_args.retrieval_ratio,
n_nearest_vectors=cli_args.n_retrieval_vectors
),
)
def load_svc_model(checkpoint_path, model):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
saved_state_dict = checkpoint_dict["model_g"]
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
print("%s is not in the checkpoint" % k)
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
return model
def svc_infer(model, retrieval: IRetrieval, spk, pit, ppg, vec, hp, device):
len_pit = pit.size()[0]
len_vec = vec.size()[0]
len_ppg = ppg.size()[0]
len_min = min(len_pit, len_vec)
len_min = min(len_min, len_ppg)
pit = pit[:len_min]
vec = vec[:len_min, :]
ppg = ppg[:len_min, :]
with torch.no_grad():
spk = spk.unsqueeze(0).to(device)
source = pit.unsqueeze(0).to(device)
source = model.pitch2source(source)
pitwav = model.source2wav(source)
write("svc_out_pit.wav", hp.data.sampling_rate, pitwav)
hop_size = hp.data.hop_length
all_frame = len_min
hop_frame = 10
out_chunk = 2500 # 25 S
out_index = 0
out_audio = []
while (out_index < all_frame):
if (out_index == 0): # start frame
cut_s = 0
cut_s_out = 0
else:
cut_s = out_index - hop_frame
cut_s_out = hop_frame * hop_size
if (out_index + out_chunk + hop_frame > all_frame): # end frame
cut_e = all_frame
cut_e_out = -1
else:
cut_e = out_index + out_chunk + hop_frame
cut_e_out = -1 * hop_frame * hop_size
sub_ppg = retrieval.retriv_whisper(ppg[cut_s:cut_e, :])
sub_vec = retrieval.retriv_hubert(vec[cut_s:cut_e, :])
sub_ppg = sub_ppg.unsqueeze(0).to(device)
sub_vec = sub_vec.unsqueeze(0).to(device)
sub_pit = pit[cut_s:cut_e].unsqueeze(0).to(device)
sub_len = torch.LongTensor([cut_e - cut_s]).to(device)
sub_har = source[:, :, cut_s *
hop_size:cut_e * hop_size].to(device)
sub_out = model.inference(
sub_ppg, sub_vec, sub_pit, spk, sub_len, sub_har)
sub_out = sub_out[0, 0].data.cpu().detach().numpy()
sub_out = sub_out[cut_s_out:cut_e_out]
out_audio.extend(sub_out)
out_index = out_index + out_chunk
out_audio = np.asarray(out_audio)
return out_audio
def main(args):
if (args.ppg == None):
args.ppg = "svc_tmp.ppg.npy"
print(
f"Auto run : python whisper/inference.py -w {args.wave} -p {args.ppg}")
os.system(f"python whisper/inference.py -w {args.wave} -p {args.ppg}")
if (args.vec == None):
args.vec = "svc_tmp.vec.npy"
print(
f"Auto run : python hubert/inference.py -w {args.wave} -v {args.vec}")
os.system(f"python hubert/inference.py -w {args.wave} -v {args.vec}")
if (args.pit == None):
args.pit = "svc_tmp.pit.csv"
print(
f"Auto run : python pitch/inference.py -w {args.wave} -p {args.pit}")
os.system(f"python pitch/inference.py -w {args.wave} -p {args.pit}")
if args.debug:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hp = OmegaConf.load(args.config)
model = SynthesizerInfer(
hp.data.filter_length // 2 + 1,
hp.data.segment_size // hp.data.hop_length,
hp)
load_svc_model(args.model, model)
retrieval = create_retrival(args)
model.eval()
model.to(device)
spk = np.load(args.spk)
spk = torch.FloatTensor(spk)
ppg = np.load(args.ppg)
ppg = np.repeat(ppg, 2, 0) # 320 PPG -> 160 * 2
ppg = torch.FloatTensor(ppg)
# ppg = torch.zeros_like(ppg)
vec = np.load(args.vec)
vec = np.repeat(vec, 2, 0) # 320 PPG -> 160 * 2
vec = torch.FloatTensor(vec)
# vec = torch.zeros_like(vec)
pit = load_csv_pitch(args.pit)
print("pitch shift: ", args.shift)
if (args.shift == 0):
pass
else:
pit = np.array(pit)
source = pit[pit > 0]
source_ave = source.mean()
source_min = source.min()
source_max = source.max()
print(f"source pitch statics: mean={source_ave:0.1f}, \
min={source_min:0.1f}, max={source_max:0.1f}")
shift = args.shift
shift = 2 ** (shift / 12)
pit = pit * shift
pit = torch.FloatTensor(pit)
out_audio = svc_infer(model, retrieval, spk, pit, ppg, vec, hp, device)
write("svc_out.wav", hp.data.sampling_rate, out_audio)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True,
help="yaml file for config.")
parser.add_argument('--model', type=str, required=True,
help="path of model for evaluation")
parser.add_argument('--wave', type=str, required=True,
help="Path of raw audio.")
parser.add_argument('--spk', type=str, required=True,
help="Path of speaker.")
parser.add_argument('--ppg', type=str,
help="Path of content vector.")
parser.add_argument('--vec', type=str,
help="Path of hubert vector.")
parser.add_argument('--pit', type=str,
help="Path of pitch csv file.")
parser.add_argument('--shift', type=int, default=0,
help="Pitch shift key.")
parser.add_argument('--enable-retrieval', action="store_true",
help="Enable index feature retrieval")
parser.add_argument('--retrieval-index-prefix', default='',
help='retrieval index file prefix. Will load file %prefix%hubert.index/%prefix%whisper.index')
parser.add_argument('--retrieval-ratio', type=float, default=.5,
help="ratio of feature retrieval effect. Must be in range 0..1")
parser.add_argument('--n-retrieval-vectors', type=int, default=3,
help="get n nearest vectors from retrieval index. Works stably in range 1..3")
parser.add_argument('--hubert-index-path', required=False,
help='path to hubert index file. Default data_svc/indexes/speaker.../%prefix%hubert.index')
parser.add_argument('--whisper-index-path', required=False,
help='path to whisper index file. Default data_svc/indexes/speaker.../%prefix%whisper.index')
parser.add_argument('--debug', action="store_true")
args = parser.parse_args()
main(args)