-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbias_proposals.py
80 lines (71 loc) · 2.26 KB
/
bias_proposals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import utils.arg_parse as arg_parse
import json
import torch
import torch.multiprocessing as mp
from utils.DDP_manager import DDP
import os
class DDP_bias_proposal(DDP):
def __init__(
self,
rank,
world_size,
proposed_biases = [],
no_biases_proposed = [],
opt = {}
):
self.proposed_biases = proposed_biases
self.no_biases_proposed = no_biases_proposed
self.opt = opt
super(DDP_bias_proposal, self).__init__(rank, world_size)
def main(
self
):
self.opt['rank'] = self.rank
bias_proposal = self.opt['dataset_setting']['bias_proposal_module'](self.opt)
biases, not_proposed_biases = bias_proposal.run_proposals()
self.proposed_biases += biases
self.no_biases_proposed += not_proposed_biases
def run(
rank: int,
world_size: int,
proposed_biases = [],
no_biases_proposed = [],
opt = {}
):
DDP_bias_proposal(
rank,
world_size,
proposed_biases,
no_biases_proposed,
opt
)
def main(opt):
# Set seed
torch.manual_seed(opt['seed'])
# Initialize MULTI GPUs
opt['logger'].info(f"Initialize MULTI GPUs on {torch.cuda.device_count()} devices")
world_size = torch.cuda.device_count()
# Initialize manager for shared memory
manager = mp.Manager()
# Initialize shared memory
proposed_biases = manager.list()
no_biases_proposed = manager.list()
mp.spawn(run, args=(world_size,
proposed_biases,
no_biases_proposed,
opt
), nprocs=world_size)
proposed_biases = json.dumps({"bias_proposal": list(proposed_biases)}, indent=4)
no_bias_proposed = json.dumps({"no_bias_proposed": list(no_biases_proposed)}, indent=4)
os.makedirs(opt['save_path'], exist_ok=True)
# Saving outputs
with open(opt['json_path'], "w+") as outfile:
outfile.write(proposed_biases)
with open(opt['not_json_path'], "w+") as outfile:
outfile.write(no_bias_proposed)
if __name__ == "__main__":
torch.multiprocessing.set_start_method('spawn')
# Parse bias proposal arguments
opt = arg_parse.argparse_bias_proposals()
# Run main
main(opt)