-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcell_tracker_movie.py
421 lines (333 loc) · 19.2 KB
/
cell_tracker_movie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#
# cell_tracker.py - plot 2-D cell tracks associated with PhysiCell .svg files
#
# Usage:
# Takes 0, 1, or 7 arguments. See below line 239 in "if __name__ == '__main__':" for usage.
#
# Dependencies include matplotlib and numpy. We recommend installing the Anaconda Python3 distribution.
#
# Examples (run from directory containing the .svg files):
# See below line 239 in "if __name__ == '__main__':"
#
# Author: function plot_cell_tracks_for_movie - Randy Heiland, modified by John Metzcar (see cell_track_plotter.py and cell_tracks.py as well for original functions)
# This script cell_tracker_movie.py - John Metzcar (Twitter - @jmetzcar). See also anim_svg_opac.py in PhysiCell tools for coloring functionality
# Used to make at the movie for figure 2c - the circular ECM with no chemical cues
import sys
import xml.etree.ElementTree as ET
import numpy as np
import glob
import matplotlib.pyplot as plt
import math, os, sys, re
import distutils.util
def plot_cell_tracks_for_movie(starting_index: int, sample_step_interval: int, number_of_samples: int, output_plot: bool,
show_plot: bool, naming_index: int, produce_for_panel: bool):
"""
Produces savable image of cell positional history, plotted as arrows (quiver plot) with final cell positions plotted as a cirle.
Slight modification of the function in cell_track_plotter. The modification allows for tracking the index of a series
of inputs such that outputs of this function can be appropriate indexed and compiled into a movie.
sample_step_interval * number_of_samples - starting_index yields the trail length in time steps. number_of_samples provides
the number of intervals plotted per image.
Parameters
----------
starting_index :
Integer index of the PhysiCell SVG output to begin trackign at
sample_step_interval :
Interval (number of time steps (SVGs)) to sample at. A value of 2 would add a tracking point for every other SVG. For this special
function, it is currently (01.27.21) assumed that will be 1.
number_of_samples :
Number of SVGs to process (total)/Length of cell positional history. Number of samples * sample size step interval provides the index of the final SVG to process
output_plot :
Save plot flag (required to produce a movie from resulting images)
show_plot :
Show plot flag (for processing many images in a loop, this should likely be set to false. Images have to be closed manually)
naming_index :
Unique to this function. Index used in naming output file of plot_cell_tracks function - filename = output + naming_index.png and leading zeros as needed.
produce_for_panel :
Flag - calls tight_layout, increases axes font sizes, and plots without title. For using in panels of images where there will be captions.
Returns
-------
Null :
Produces a png image from the input PhysiCell SVGs.
"""
#### Flags
output_plot = output_plot
show_plot = show_plot
naming_index = naming_index
produce_for_panel = produce_for_panel
d = {} # dictionary to hold all (x,y) positions of cells
d_attributes = {} #dictionary to hold other attributes, like color (a data frame might be nice here in the long run ... )\
# currently only being read once only as cell dictionary is populated - so only use for static values!
"""
--- for example ---
In [141]: d['cell1599'][0:3]
Out[141]:
array([[ 4900. , 4900. ],
[ 4934.17, 4487.91],
[ 4960.75, 4148.02]])
"""
####################################################################################################################
#################################### Generate list of file indices to load ########################
####################################################################################################################
endpoint = starting_index + sample_step_interval * number_of_samples
file_indices = np.linspace(starting_index, endpoint, num=number_of_samples, endpoint=False)
print(file_indices)
####################################################################################################################
#################################### Main loading and processing loop ########################
####################################################################################################################
for file_index in file_indices:
fname = "%0.8d" % file_index
fname = 'snapshot' + fname + '.svg' # https://realpython.com/python-f-strings/
# print(fname)
##### Parse XML tree into a dictionary called 'tree" and get root
# print('\n---- ' + fname + ':')
tree = ET.parse(fname)
# print('--- root.tag, root.attrib ---')
root = tree.getroot()
# print('--- root.tag ---')
# print(root.tag)
# print('--- root.attrib ---')
# print(root.attrib)
# print('--- child.tag, child.attrib ---')
numChildren = 0
### Find branches coming from root - tissue parents
for child in root:
# print(child.tag, child.attrib)
# print('attrib=',child.attrib)
# if (child.attrib['id'] == 'tissue'):
##### Find the tissue tag and make it child
if child.text and "Current time" in child.text:
svals = child.text.split()
title_str = "Current time: " + svals[2] + "d, " + svals[4] + "h, " + svals[
7] + "m"
if ('width' in child.attrib.keys()):
#### Assumes a 70 length unit offsite inthe the Y dimension of the SVG!!!!!!
plot_x_extend = float(child.attrib['width'])
plot_y_extend = float(child.attrib['height'])
#### Remove the padding placed into the SVG to determine the true y extend
plot_y_extend = plot_y_extend-70
#### Find the coordinate transform amounts
y_coordinate_transform = plot_y_extend/2
x_coordinate_transform = plot_x_extend/2
if ('id' in child.attrib.keys()):
# print('-------- found tissue!!')
tissue_parent = child
break
# print('------ search tissue')
### find the branch with the cells "id=cells" among all the branches in the XML root
for child in tissue_parent:
# print('attrib=',child.attrib)
if (child.attrib['id'] == 'cells'):
# print('-------- found cells!!')
cells_parent = child
break
numChildren += 1
### Search within the cells branch for all indiviual cells. Get their locations
num_cells = 0
# print('------ search cells')
for child in cells_parent:
# print(child.tag, child.attrib)
# print('attrib=',child.attrib)
# Find the locations of the cells within the cell tags
for circle in child:
# print(' --- cx,cy=',circle.attrib['cx'],circle.attrib['cy'])
xval = float(circle.attrib['cx'])
# should we test for bogus x,y locations??
if (math.fabs(xval) > 10000.):
print("xval=", xval)
break
yval = float(circle.attrib['cy'])
if (math.fabs(yval) > 10000.):
print("xval=", xval)
break
# Pull out the cell's location. If ID not already in stack to track, put in new cell in dictionary
if (child.attrib['id'] in d.keys()):
d[child.attrib['id']] = np.vstack((d[child.attrib['id']],
[float(circle.attrib['cx']) - x_coordinate_transform,
float(circle.attrib['cy']) - y_coordinate_transform]))
else:
d[child.attrib['id']] = np.array([float(circle.attrib['cx']) - x_coordinate_transform,
float(circle.attrib['cy']) - y_coordinate_transform])
d_attributes[child.attrib['id']] = circle.attrib['fill']
##### This 'break' statement is required to skip the nucleus circle. There are two circle attributes. \
##### If both nuclear and cell boundary attributes are needed, this break NEEDS REMOVED!!!!
break
# if (child.attrib['id'] == 'cells'):
# print('-------- found cells!!')
# tissue_child = child
#### num_cells becomes total number of cells per frame/sample
num_cells += 1
print(fname, ': num_cells= ', num_cells)
####################################################################################################################
#################################### Plot cell tracks and other options ########################
####################################################################################################################
fig = plt.figure(figsize=(8, 8))
ax = fig.gca()
ax.set_aspect("equal")
# ax.set_xticks([])
# ax.set_yticks([]);
# ax.set_xlim(0, 8); ax.set_ylim(0, 8)
# print 'dir(fig)=',dir(fig)
# fig.set_figwidth(8)
# fig.set_figheight(8)
count = 0
# weighting = np.linspace(0.0001, 3.5, num=number_of_samples)
#
# weighting = np.log10(weighting)
##### Extract and plot position data for each cell found
for key in d.keys():
if (len(d[key].shape) == 2):
x = d[key][:, 0]
y = d[key][:, 1]
# plt.plot(x, y,'-') # plot doesn't seem to allow weighting or size variation at all in teh connections ... # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.arrow.html or https://stackoverflow.com/questions/7519467/line-plot-with-arrows-in-matplotlib
# plt.scatter(x, y, s = weighting) - scatter allows weighting but doens't connect ...
# plt.scatter(x, y, s=weighting) # could try a non-linear weighting ...
#### Plot cell track as a directed, weighted (by length) path
plt.quiver(x[:-1], y[:-1], x[1:] - x[:-1], y[1:] - y[:-1], scale_units='xy', angles='xy', scale=1,
minlength=0.001, headwidth=1.5, headlength=4)
#### Plot final cell position. MAY NOT TAKE RGB VALUES!!!
plt.scatter(x[-1], y[-1], s = 5.0, c = d_attributes[key])
#### used if history lenght is set to 0 and if in first frame of sequnece (there is no history)
elif (len(d[key].shape) == 1):
x = d[key][0]
y = d[key][1]
#### Plot final cell position. MAY NOT TAKE RGB VALUES!!!
plt.scatter(x, y, s = 5.0, c = d_attributes[key])
else:
print(key, " has no x,y points")
#### Build plot frame, titles, and save data
plt.ylim(-plot_y_extend/2, plot_y_extend/2)
plt.xlim(-plot_x_extend/2, plot_x_extend/2)
output_folder = ''
snapshot = str(starting_index) + '_' + str(sample_step_interval) + '_' + str(number_of_samples)
snapshot = 'output' + f'{naming_index:08}'
# Produce plot following the available options.
if produce_for_panel == False:
title_str = "History from image " + str(starting_index) + " to image " + str(endpoint) + "; " + title_str
# %"Starting at frame {}, sample interval of {} for {} total samples".format(number_of_samples, sample_step_interval, number_of_samples)
plt.title(title_str)
else:
fig.tight_layout()
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
if output_plot is True:
plt.savefig(output_folder + snapshot + '.png', dpi=256)
if show_plot is True:
plt.show()
plt.close() # cell_tracker_movie.py:151: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
def create_tracks_movie(data_path: str, save_path: str, save_name: str, start_file_index: int, end_file_index: int,
trail_length: int, INCLUDE_ALL_SVGs: bool, INCLUDE_FULL_HISTORY: bool):
"""
Generates the list of files in data_path, finds the relevant SVGs, makes plots from them, then outputs an
ffmpeg generated movie to save_path, naming the movie save_name.
This function requires ffmpeg be installed at the command line.
:param data_path: Path to directory containing data
:param save_path: Path to save generated image(s) and movie to
:param save_name: Save name for movie
:param start_file_index: For the plotting call - Integer index of the PhysiCell SVG output to begin tracking at
:param end_file_index: For the plotting call - Integer index of last PhysiCell SVG output to include in movie
:param trail_length: For the plotting call - Length (in output steps) of cell positional history to include in movie
:param INCLUDE_ALL_SVGs: If true, all findable PhysiCell SVGs are processed and included in movie
:param INCLUDE_FULL_HISTORY: If true, the entire available cell history is included, regardless of the value of trail length.
:return: Null. Produces a series of images from PhysiCell SVGs and movie from said images.
"""
#### Flags (for cell track plotter calls)
output_plot = True
show_plot = False
produce_for_panel = False
#### Get list of all file names in directory
files = os.listdir(data_path)
list_of_svgs = []
#### examine all file names in directory and add ones, via string matching, as needed to list of names of files of interest
for i in range(len(files)):
if not re.search('snapshot(.*)\.svg', files[i]):
continue
# I feel like a dictionary could be used here, but I really need some ordering. A dict might be faster, but I don't
# expect huge file lists. So I will just sort as I know how to do that ...
list_of_svgs.append(files[i])
#### Sort file name list
list_of_svgs.sort()
truncated_list_of_svgs = []
#### Reduce file list to times of interst only
for i in range(len(list_of_svgs)):
if i < start_file_index:
continue
if i >= end_file_index:
continue
truncated_list_of_svgs.append(list_of_svgs[i])
# print(list_of_svgs)
print(truncated_list_of_svgs)
if INCLUDE_ALL_SVGs:
print('Including all SVGs')
truncated_list_of_svgs = list_of_svgs
max_number_of_samples = trail_length
if INCLUDE_FULL_HISTORY:
print('Including full positional history of cells')
max_number_of_samples = len(truncated_list_of_svgs)
print('Processing {} SVGs'.format(len(truncated_list_of_svgs)))
# Also, as written it isn't very flexible
# would certainly be ideal to not call plot_cell_tracks every time, but instead store what is available. Could add a function that just
# extracts the data from one SVG then appends it to exsisting data structure. could read all the desired data into Pandas DF
# then write out images. Etc. But as is, this is definitely reading the SVGs much to frequently.
for i in range(len(truncated_list_of_svgs)):
j = i + 1 # this offsets the index so that we don't report that 0 samples have been taken, while stil producing an image.
starting_index = j - max_number_of_samples
#### Goes with "trail closing" block - not currently being used.
projected_upper_sample_index = max_number_of_samples + starting_index
max_samples_left = len(truncated_list_of_svgs) - j
if i >= max_number_of_samples:
plot_cell_tracks_for_movie(starting_index, 1, max_number_of_samples, output_plot, show_plot, i, produce_for_panel)
# print('middle')
#### If one wanted to make the trails collapse into the last available location of the cell you would use something
#### like this elif block
# elif projected_upper_sample_index > len(list_of_svgs)-1:
# plot_cell_tracks(starting_index, 1, max_samples_left, True, True, i)
# print(max_samples_left)
# print('late')
else:
plot_cell_tracks_for_movie(0, 1, j, output_plot, show_plot, i, produce_for_panel)
# print('early')
#### Total frames to include in moview
number_frames = end_file_index - start_file_index
if INCLUDE_ALL_SVGs:
number_frames = len(list_of_svgs)
start_file_index = 0
# string_of_interest = 'ffmpeg -start_number ' + str(
# start_file_index) + ' -y -framerate 12 -i ' + save_path + 'output%08d.png' + ' -frames:v ' + str(
# number_frames) + ' -pix_fmt yuv420p -vf pad="width=ceil(iw/2)*2:height=ceil(ih/2)*2" "' + save_name + '.mp4"'
# print(string_of_interest)
os.system(
'ffmpeg -start_number ' + str(
start_file_index) + ' -y -framerate 12 -i ' + save_path + 'output%08d.png' + ' -frames:v ' + str(
number_frames) + ' -pix_fmt yuv420p -vf pad="width=ceil(iw/2)*2:height=ceil(ih/2)*2" "' + save_name + '.mp4"')
# https://superuser.com/questions/666860/clarification-for-ffmpeg-input-option-with-image-files-as-input
# https://superuser.com/questions/734976/ffmpeg-limit-number-of-images-converted-to-video
if __name__ == '__main__':
# Execute only if run as a script
if len(sys.argv) == 1:
# Running with no arguments will make the script run every SVG with not stop to trail length
create_tracks_movie('.', '', 'cell_tracks', 0, 10, 1, True, True)
elif len(sys.argv) == 2:
# Running with 1 argument sets the movie name and nothign else
movie_name = sys.argv[1]
create_tracks_movie('.', '', movie_name, 0, 10, 1, True, True)
elif len(sys.argv) == 7:
starting_file_index = int(sys.argv[1])
end_file_index = int(sys.argv[2])
cell_trail_length = int(sys.argv[3]) # length in time steps
movie_name = sys.argv[4]
INCLUDE_ALL_SVGs = bool(distutils.util.strtobool(sys.argv[5]))# bool(sys.argv[5])
INCLUDE_FULL_HISTORY = bool(distutils.util.strtobool(sys.argv[6])) # bool(sys.argv[6])
create_tracks_movie('.', '', movie_name, starting_file_index, end_file_index, cell_trail_length, INCLUDE_ALL_SVGs, INCLUDE_FULL_HISTORY)
else:
print('\nInput 0 arguments to process every available full and include full history and output movie with '
'default name of cell_tracks.mp4')
usage_str = "Usage: %s \n" % (sys.argv[0])
print(usage_str)
print('Input 1 argument (a string) to set movie name and process all files and full history')
usage_str = "Usage: %s this_is_great_data\n" % (sys.argv[0])
print(usage_str)
print('Input 7 arguments to gain the most control')
usage_str = "Usage: %s <start tracking index> <end file index> <history trail length> <movie name> " \
"<Bool: Include all SVGs> <Bool: Include full cell history> \n" % (sys.argv[0])
print(usage_str)
exit(1)