-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
291 lines (257 loc) · 19.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import sys
import os
import time
import tensorflow as tf
import numpy as np
from sar_model import SARModel
from data_provider import lmdb_data_generator, lmdb_char_data_generator
from data_provider import evaluator_data
from data_provider.data_utils import get_vocabulary
from utils.transcription_utils import idx2label, calc_metrics
from config import get_args
def get_data(image_dir, voc_type, max_len, height, width, batch_size, workers, keep_ratio, with_aug):
data_list = []
if isinstance(image_dir, list) and len(image_dir) > 1:
# assert len(image_dir) == len(gt_path), "datasets and gt are not corresponding"
assert batch_size % len(image_dir) == 0, "batch size should divide dataset num"
per_batch_size = batch_size // len(image_dir)
for i in image_dir:
data_list.append(lmdb_char_data_generator.get_batch(workers, lmdb_dir=i, input_height=height, input_width=width, batch_size=per_batch_size, max_len=max_len, voc_type=voc_type, keep_ratio=keep_ratio, with_aug=with_aug))
else:
if isinstance(image_dir, list):
data = lmdb_char_data_generator.get_batch(workers, lmdb_dir=image_dir[0], input_height=height, input_width=width, batch_size=batch_size, max_len=max_len, voc_type=voc_type, keep_ratio=keep_ratio, with_aug=with_aug)
else:
data = lmdb_char_data_generator.get_batch(workers, lmdb_dir=image_dir, input_height=height, input_width=width, batch_size=batch_size, max_len=max_len, voc_type=voc_type, keep_ratio=keep_ratio, with_aug=with_aug)
data_list.append(data)
return data_list
def get_batch_data(data_list, batch_size):
batch_images = []
batch_labels = []
batch_gauss_labels = []
batch_gauss_tags = []
batch_gauss_params = []
batch_labels_mask = []
batch_labels_str = []
batch_widths = []
batch_char_sizes = []
batch_gauss_mask = []
for data in data_list:
_data = next(data)
batch_images.append(_data[0])
batch_labels.append(_data[1])
batch_gauss_labels.append(_data[2])
batch_labels_mask.append(_data[3])
batch_labels_str.extend(_data[5])
batch_widths.append(_data[6])
batch_gauss_tags.append(_data[7])
batch_gauss_params.append(_data[8])
batch_char_sizes.append(_data[9])
batch_gauss_mask.append(_data[10])
batch_images = np.concatenate(batch_images, axis=0)
batch_labels = np.concatenate(batch_labels, axis=0)
batch_gauss_labels = np.concatenate(batch_gauss_labels,axis=0)
batch_labels_mask = np.concatenate(batch_labels_mask, axis=0)
batch_widths = np.concatenate(batch_widths, axis=0)
batch_gauss_tags = np.concatenate(batch_gauss_tags, axis=0)
batch_gauss_params = np.concatenate(batch_gauss_params, axis=0)
batch_char_sizes = np.concatenate(batch_char_sizes, axis=0)
batch_gauss_mask = np.concatenate(batch_gauss_mask, axis=0)
assert len(batch_images) == batch_size, "concat data is not equal to batch size"
return batch_images, batch_labels, batch_gauss_labels, batch_labels_mask, batch_labels_str, batch_widths, batch_gauss_tags, batch_gauss_params, batch_char_sizes, batch_gauss_mask
def main_train(args):
voc, char2id, id2char = get_vocabulary(voc_type=args.voc_type)
tf.set_random_seed(1)
# Build graph
input_train_images = tf.placeholder(dtype=tf.float32, shape=[args.train_batch_size, args.height, args.width, 3], name="input_train_images")
input_train_images_width = tf.placeholder(dtype=tf.float32, shape=[args.train_batch_size], name="input_train_width")
input_train_labels = tf.placeholder(dtype=tf.int32, shape=[args.train_batch_size, args.max_len], name="input_train_labels")
input_train_gauss_labels = tf.placeholder(dtype=tf.float32, shape=[args.train_batch_size, args.max_len, 6, 40], name="input_train_gauss_labels") # better way wanted!!!
input_train_gauss_tags = tf.placeholder(dtype=tf.float32, shape=[args.train_batch_size, args.max_len], name="input_train_gauss_tags")
input_train_gauss_params = tf.placeholder(dtype=tf.float32, shape=[args.train_batch_size, args.max_len, 4], name="input_train_gauss_params")
input_train_labels_mask = tf.placeholder(dtype=tf.int32, shape=[args.train_batch_size, args.max_len], name="input_train_labels_mask")
input_train_char_sizes = tf.placeholder(dtype=tf.float32, shape=[args.train_batch_size, args.max_len, 2], name="input_train_char_sizes")
input_train_gauss_mask = tf.placeholder(dtype=tf.float32, shape=[args.train_batch_size, args.max_len, 6, 40], name="input_train_gauss_mask")
input_val_images = tf.placeholder(dtype=tf.float32, shape=[args.val_batch_size, args.height, args.width, 3],name="input_val_images")
input_val_images_width = tf.placeholder(dtype=tf.float32, shape=[args.val_batch_size], name="input_val_width")
input_val_labels = tf.placeholder(dtype=tf.int32, shape=[args.val_batch_size, args.max_len], name="input_val_labels")
# input_val_gauss_labels = tf.placeholder(dtype=tf.float32, shape=[args.val_batch_size, args.max_len, args.height, args.width], name="input_val_gauss_labels")
input_val_labels_mask = tf.placeholder(dtype=tf.int32, shape=[args.val_batch_size, args.max_len], name="input_val_labels_mask")
sar_model = SARModel(num_classes=len(voc),
encoder_dim=args.encoder_sdim,
encoder_layer=args.encoder_layers,
decoder_dim=args.decoder_sdim,
decoder_layer=args.decoder_layers,
decoder_embed_dim=args.decoder_edim,
seq_len=args.max_len,
is_training=True,
att_loss_type=args.att_loss_type,
att_loss_weight=args.att_loss_weight)
sar_model_val = SARModel(num_classes=len(voc),
encoder_dim=args.encoder_sdim,
encoder_layer=args.encoder_layers,
decoder_dim=args.decoder_sdim,
decoder_layer=args.decoder_layers,
decoder_embed_dim=args.decoder_edim,
seq_len=args.max_len,
is_training=False)
train_model_infer, train_attention_weights, train_pred, train_attention_params = sar_model(input_train_images, input_train_labels,
input_train_images_width,
batch_size=args.train_batch_size, reuse=False)
if args.att_loss_type == "kldiv":
train_loss, train_recog_loss, train_att_loss = sar_model.loss(train_model_infer, train_attention_weights, input_train_labels, input_train_gauss_labels, input_train_labels_mask, input_train_gauss_tags)
elif args.att_loss_type == "l1" or args.att_loss_type == "l2":
# train_loss, train_recog_loss, train_att_loss = sar_model.loss(train_model_infer, train_attention_params, input_train_labels, input_train_gauss_params, input_train_labels_mask, input_train_gauss_tags, input_train_char_sizes)
train_loss, train_recog_loss, train_att_loss = sar_model.loss(train_model_infer, train_attention_weights, input_train_labels, input_train_gauss_labels, input_train_labels_mask, input_train_gauss_tags)
elif args.att_loss_type == 'ce':
train_loss, train_recog_loss, train_att_loss = sar_model.loss(train_model_infer, train_attention_weights, input_train_labels, input_train_gauss_labels, input_train_labels_mask, input_train_gauss_tags, input_train_gauss_mask)
elif args.att_loss_type == 'gausskldiv':
train_loss, train_recog_loss, train_att_loss = sar_model.loss(train_model_infer, train_attention_params, input_train_labels, input_train_gauss_params, input_train_labels_mask, input_train_gauss_tags)
else:
print("Unimplemented loss type {}".format(args.att_loss_dtype))
exit(-1)
val_model_infer, val_attention_weights, val_pred, _ = sar_model_val(input_val_images,
input_val_labels,
input_val_images_width,
batch_size=args.val_batch_size, reuse=True)
train_data_list = get_data(args.train_data_dir,
args.voc_type,
args.max_len,
args.height,
args.width,
args.train_batch_size,
args.workers,
args.keep_ratio,
with_aug=args.aug)
val_data_gen = evaluator_data.Evaluator(lmdb_data_dir=args.test_data_dir,
batch_size=args.val_batch_size,
height=args.height,
width=args.width,
max_len=args.max_len,
keep_ratio=args.keep_ratio,
voc_type=args.voc_type)
val_data_gen.reset()
global_step = tf.get_variable(name='global_step', initializer=tf.constant(0), trainable=False)
learning_rate = tf.train.piecewise_constant(global_step, args.decay_bound, args.lr_stage)
batch_norm_updates_op = tf.group(tf.get_collection(tf.GraphKeys.UPDATE_OPS))
# Save summary
os.makedirs(args.checkpoints, exist_ok=True)
tf.summary.scalar(name='train_loss', tensor=train_loss)
tf.summary.scalar(name='train_recog_loss', tensor=train_recog_loss)
tf.summary.scalar(name='train_att_loss', tensor=train_att_loss)
# tf.summary.scalar(name='val_att_loss', tensor=val_att_loss)
tf.summary.scalar(name='learning_rate', tensor=learning_rate)
merge_summary_op = tf.summary.merge_all()
train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
model_name = 'sar_{:s}.ckpt'.format(str(train_start_time))
model_save_path = os.path.join(args.checkpoints, model_name)
best_model_save_path = os.path.join(args.checkpoints, 'best_model', model_name)
variable_averages = tf.train.ExponentialMovingAverage(0.997, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([variables_averages_op, batch_norm_updates_op]):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
grads = optimizer.compute_gradients(train_loss)
if args.grad_clip > 0:
print("With Gradients clipped!")
for idx, (grad, var) in enumerate(grads):
grads[idx] = (tf.clip_by_norm(grad, args.grad_clip), var)
train_op = optimizer.apply_gradients(grads, global_step=global_step)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
best_saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
summary_writer = tf.summary.FileWriter(args.checkpoints)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
log_file = open(os.path.join(args.checkpoints, args.checkpoints + ".log"), "w")
with tf.Session(config=config) as sess:
summary_writer.add_graph(sess.graph)
start_iter = 0
if args.resume == True and args.pretrained != '':
print('Restore model from {:s}'.format(args.pretrained))
ckpt_state = tf.train.get_checkpoint_state(args.pretrained)
model_path = os.path.join(args.pretrained, os.path.basename(ckpt_state.model_checkpoint_path))
saver.restore(sess=sess, save_path=model_path)
start_iter = sess.run(tf.train.get_global_step())
elif args.resume == False and args.pretrained != '':
print('Restore pretrained model from {:s}'.format(args.pretrained))
ckpt_state = tf.train.get_checkpoint_state(args.pretrained)
model_path = os.path.join(args.pretrained, os.path.basename(ckpt_state.model_checkpoint_path))
saver.restore(sess=sess, save_path=model_path)
sess.run(tf.assign(global_step, 0))
else:
print('Training from scratch')
init = tf.global_variables_initializer()
sess.run(init)
# Evaluate the model first
val_pred_value_all = []
val_labels = []
for eval_iter in range(val_data_gen.num_samples // args.val_batch_size):
val_data = val_data_gen.get_batch()
if val_data is None:
break
print("Evaluation: [{} / {}]".format(eval_iter, (val_data_gen.num_samples // args.val_batch_size)))
val_pred_value = sess.run(val_pred, feed_dict={input_val_images: val_data[0],
input_val_labels: val_data[1],
input_val_images_width: val_data[5],
input_val_labels_mask: val_data[2]})
val_pred_value_all.extend(val_pred_value)
val_labels.extend(val_data[4])
val_data_gen.reset()
val_metrics_result = calc_metrics(idx2label(np.array(val_pred_value_all)), val_labels, metrics_type="accuracy")
print("Evaluation Before training: Test accuracy {:3f}".format(val_metrics_result))
val_best_acc = val_metrics_result
while start_iter < args.iters:
start_iter += 1
train_data = get_batch_data(train_data_list, args.train_batch_size)
_, train_loss_value, train_recog_loss_value, train_att_loss_value, train_pred_value = sess.run([train_op, train_loss, train_recog_loss, train_att_loss, train_pred], feed_dict={input_train_images: train_data[0],
input_train_labels: train_data[1],
input_train_gauss_labels: train_data[2],
input_train_gauss_params: train_data[7],
input_train_labels_mask: train_data[3],
input_train_images_width: train_data[5],
input_train_gauss_tags: train_data[6],
input_train_char_sizes: train_data[8],
input_train_gauss_mask: train_data[9]})
if start_iter % args.log_iter == 0:
print("Iter {} train loss= {:3f} (recog loss= {:3f} att loss= {:3f})".format(start_iter, train_loss_value, train_recog_loss_value, train_att_loss_value))
log_file.write("Iter {} train loss= {:3f} (recog loss= {:3f} att loss= {:3f})".format(start_iter, train_loss_value, train_recog_loss_value, train_att_loss_value))
if start_iter % args.summary_iter == 0:
merge_summary_value = sess.run(merge_summary_op, feed_dict={input_train_images: train_data[0],
input_train_labels: train_data[1],
input_train_gauss_labels: train_data[2],
input_train_gauss_params: train_data[7],
input_train_labels_mask: train_data[3],
input_train_images_width: train_data[5],
input_train_gauss_tags: train_data[6],
input_train_char_sizes: train_data[8],
input_train_gauss_mask: train_data[9]})
summary_writer.add_summary(summary=merge_summary_value, global_step=start_iter)
if start_iter % args.eval_iter == 0:
val_pred_value_all = []
val_labels = []
for eval_iter in range(val_data_gen.num_samples // args.val_batch_size):
val_data = val_data_gen.get_batch()
if val_data is None:
break
print("Evaluation: [{} / {}]".format(eval_iter, (val_data_gen.num_samples // args.val_batch_size)))
val_pred_value = sess.run(val_pred, feed_dict={input_val_images: val_data[0],
input_val_labels: val_data[1],
input_val_labels_mask: val_data[2],
input_val_images_width: val_data[5]})
val_pred_value_all.extend(val_pred_value)
val_labels.extend(val_data[4])
val_data_gen.reset()
train_metrics_result = calc_metrics(idx2label(train_pred_value), train_data[4], metrics_type="accuracy")
val_metrics_result = calc_metrics(idx2label(np.array(val_pred_value_all)), val_labels, metrics_type="accuracy")
print("Evaluation Iter {} train accuracy: {:3f} test accuracy {:3f}".format(start_iter, train_metrics_result, val_metrics_result))
log_file.write("Evaluation Iter {} train accuracy: {:3f} test accuracy {:3f}\n".format(start_iter, train_metrics_result, val_metrics_result))
if val_metrics_result >= val_best_acc:
print("Better results! Save checkpoitns to {}".format(best_model_save_path))
val_best_acc = val_metrics_result
best_saver.save(sess, best_model_save_path, global_step=global_step)
if start_iter % args.save_iter == 0:
print("Iter {} save to checkpoint".format(start_iter))
saver.save(sess, model_save_path, global_step=global_step)
log_file.close()
if __name__ == "__main__":
args = get_args(sys.argv[1:])
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
main_train(args)