-
Notifications
You must be signed in to change notification settings - Fork 135
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
🚀 Train Custom Data Tutorial 自定义数据集训练教程 🚀 #43
Comments
自定义数据集训练教程 (中文版)0. 案例PaddleDetection团队提供了基于PP-YOLOE的各种垂类检测模型的配置文件和权重,用户也可以作为参考去使用自定义数据集。请参考 PP-YOLOE application、pphuman、ppvehicle、visdrone 和 smalldet。
PaddleDetection团队也提供了VOC数据集的各种YOLO模型的配置文件和权重,用户也可以作为参考去使用自定义数据集。请参考 voc。 1. 自定义数据集准备:1.自定义数据集的标注制作,请参考 DetAnnoTools; 2.自定义数据集的训练准备,请参考 PrepareDataSet. 注意:
2. 一键运行全流程
注意:
3. Fintune 微调训练:除了更改数据集的路径外,训练一般推荐加载对应模型的COCO预训练权重去fintune,会更快收敛和达到更高精度,如:
注意:
4. 预测和导出:使用自定义数据集预测和导出模型时,如果TestDataset数据集路径设置不正确会默认使用COCO 80类。
label_list.txt里的一行记录一个对应种类,如下所示:
|
我想问下 自己定义的数据集比如用yolov7需要把图像缩放到同一大小吗? |
不需要的。检测的图片预处理步骤里有统一resize到固定大小比如640的操作。 |
@zmdcs 先发一下run2.sh里具体写的。也可以一句句去执行。 |
|
我并未做修改也不行,改成单卡也不行 |
机器环境字符解析问题,自己手打一遍试试。
|
哦,我试试 |
你好,我是在Windows环境下用命令行下载的coco数据集,其中md5校验码与项目文件中预设的不一致,请问这个会有什么问题吗? |
我都没注意过还有md5校验码,这个问题可能帮不了你
…------------------ 原始邮件 ------------------
发件人: ziishuo ***@***.***>
发送时间: 2023年9月3日 15:54
收件人: PaddlePaddle/PaddleYOLO ***@***.***>
抄送: zmdcs ***@***.***>, Mention ***@***.***>
主题: Re: [PaddlePaddle/PaddleYOLO] �� Train Custom Data Tutorial 自定义数据集训练教程 �� (Issue #43)
你好,我是在Windows环境下用命令行下载的coco数据集,其中md5校验码与项目文件中预设的不一致,请问这个会有什么问题吗?
PaddleYOLO\dataset\coco\train2017.zip md5 check failed, 07941f3a386c4a9ca10d7b1cfe5f69ab(calc) != cced6f7f71b7629ddf16f17bbcfab6b2(base)
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you were mentioned.Message ID: ***@***.***>
|
或者去官网下载 https://cocodataset.org/#download 。并配置好路径即可。 |
自定义数据集可以和COCO数据集的种类数量和种类完全不一样吗 @nemonameless |
Train Custom Data Tutorial (English version)
Note:The Chinese version of the tutorial is located in the second reply below. 中文版教程请看下面第二条回复。
0. Examples
The PaddleDetection team provides various feature detection models based on PP-YOLOE , which can also be used as a reference to modify on your custom dataset. Please refer to PP-YOLOE application, pphuman, ppvehicle, visdrone and smalldet.
PaddleDetection also provides various YOLO models for VOC dataset , which can also be used as a reference to modify on your custom dataset. Please refer to voc.
1. Custom data preparation:
1.For the annotation of custom dataset, please refer to DetAnnoTools;
2.For training preparation of custom dataset,please refer to PrepareDataSet.
Note:
2. Run script
Note:
run.sh
, and run as:sh run.sh
. You can also run the command line sentence by sentence.pip install paddleslim
, then setprint_flops: True
andprint_params: True
in runtime.yml. Make sure single scale like 640x640.3. Fintune for training:
In addition to changing the path of the dataset, it is generally recommended to load the COCO pre training weight of the corresponding model to fintune, which will converge faster and achieve higher accuracy, such as:
Note:
4. Predict and export:
When using custom dataset to predict and export models, if the path of the TestDataset dataset is set incorrectly, COCO 80 categories will be used by default.
In addition to the correct path setting of the TestDataset dataset, you can also modify and add the corresponding
label_list
. Txt file (one category is recorded in one line), andanno_path
in TestDataset can also be set as an absolute path, such as:one line in
label_list.txt
records a corresponding category:The text was updated successfully, but these errors were encountered: