-
Notifications
You must be signed in to change notification settings - Fork 645
/
Copy pathdygraph_model.py
145 lines (129 loc) · 5.75 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import pgl
import os
import numpy as np
from net import L0_SIGN
def get_n_feature(config):
data_dir = config.get("runner.train_data_dir", "data")
if os.path.split(os.getcwd())[-1] != 'sign':
data_dir = os.path.join(os.getcwd(), "models/rank/sign", data_dir)
file_list = [os.path.join(data_dir, x) for x in os.listdir(data_dir)]
max_node_index = 0
for file in file_list:
with open(file, 'r') as f:
for line in f:
data = line.split()
# all other nums is node
node_list = [int(data[i]) for i in range(len(data))[1:]]
max_node_index = max(max_node_index, max(node_list))
return max_node_index + 1
class DygraphModel():
# define model
def create_model(self, config):
pred_edges = config.get('hyper_parameters.pred_edges', 1)
dim = config.get('hyper_parameters.dim', 8)
hidden_layer = config.get('hyper_parameters.hidden_layer', 64)
l0_para = config.get('hyper_parameters.l0_para', [0.66, -0.1, 1.1])
batch_size = config.get('runner.train_batch_size', 8)
n_feature = get_n_feature(config=config)
model = L0_SIGN(pred_edges, n_feature, dim, hidden_layer, l0_para,
batch_size)
return model
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, batch_data, config):
batch_size = config.get("runner.train_batch_size", 1024)
graphs = []
labels = []
for i in range(batch_size):
g = pgl.Graph(
num_nodes=batch_data[0][i].numpy(),
edges=batch_data[1][i].numpy(),
node_feat={"node_attr": batch_data[2][i].numpy()},
edge_feat={"edge_attr": batch_data[3][i].numpy()})
graphs.append(g)
labels.append(batch_data[4][i].numpy())
graphs = pgl.Graph.batch(graphs).tensor()
labels = paddle.to_tensor(labels, dtype='float32')
edges = np.array(graphs.edges, dtype="int32")
node_feat = np.array(graphs.node_feat["node_attr"], dtype="int32")
edge_feat = np.array(graphs.edge_feat["edge_attr"], dtype="int32")
segment_ids = graphs.graph_node_id
return edges, node_feat, edge_feat, segment_ids, labels
# define loss function by predicts and label
def create_loss(self, output, label, l0_penaty, l2_penaty, l0_weight,
l2_weight):
crit = paddle.nn.MSELoss()
baseloss = crit(output, label)
l0_loss = l0_penaty * l0_weight
l2_loss = l2_penaty * l2_weight
loss = baseloss + l0_loss + l2_loss
# loss_all += num_graph * loss.item()
return loss
# define optimizer
def create_optimizer(self, dy_model, config):
lr = config.get("hyper_parameters.optimizer.learning_rate", 0.05)
optimizer = paddle.optimizer.Adagrad(
learning_rate=lr,
parameters=dy_model.parameters(),
epsilon=1e-05,
weight_decay=1e-05)
return optimizer
# define metrics such as auc/acc
def create_metrics(self):
metrics_list_name = ["AUC", "ACC"]
auc_metric = paddle.metric.Auc()
acc_metric = paddle.metric.Accuracy()
metrics_list = [auc_metric, acc_metric]
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
edges, node_feat, edge_feat, segment_ids, labels = self.create_feeds(
batch_data, config)
# predict
output, l0_penaty, l2_penaty = dy_model.forward(
edges, node_feat, edge_feat, segment_ids, True)
# get loss
l0_weight = config.get("hyper_parameters.l0_weight", 0.001)
l2_weight = config.get("hyper_parameters.l0_weight", 0.001)
loss = self.create_loss(output, labels, l0_penaty, l2_penaty,
l0_weight, l2_weight)
# update metrics
predictions = np.vstack(output)
labels = np.vstack(labels)
labels = labels[:, 1].reshape((-1, 1))
metrics_list[0].update(preds=predictions, labels=labels)
correct = metrics_list[1].compute(
paddle.to_tensor(predictions), paddle.to_tensor(labels))
metrics_list[1].update(correct)
# print dict
print_dict = {'loss': loss}
return loss, metrics_list, print_dict
# construct infer forward phase
def infer_forward(self, dy_model, metrics_list, batch_data, config):
edges, node_feat, edge_feat, segment_ids, labels = self.create_feeds(
batch_data, config)
# predict
output, _, _ = dy_model.forward(edges, node_feat, edge_feat,
segment_ids, False)
# update metrics
predictions = np.vstack(output)
labels = np.vstack(labels)
labels = labels[:, 1].reshape((-1, 1))
metrics_list[0].update(preds=predictions, labels=labels)
correct = metrics_list[1].compute(
paddle.to_tensor(predictions), paddle.to_tensor(labels))
metrics_list[1].update(correct)
return metrics_list, None