-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
centernet_fpn.py
executable file
·426 lines (377 loc) · 14.7 KB
/
centernet_fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import math
import paddle
import paddle.nn as nn
from paddle import ParamAttr
from paddle.nn.initializer import Uniform
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ppdet.modeling.backbones.hardnet import ConvLayer, HarDBlock
from ..shape_spec import ShapeSpec
__all__ = ['CenterNetDLAFPN', 'CenterNetHarDNetFPN']
# SGE attention
class BasicConv(nn.Layer):
def __init__(self,
in_planes,
out_planes,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
relu=True,
bn=True,
bias_attr=False):
super(BasicConv, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2D(
in_planes,
out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias_attr=bias_attr)
self.bn = nn.BatchNorm2D(
out_planes,
epsilon=1e-5,
momentum=0.01,
weight_attr=False,
bias_attr=False) if bn else None
self.relu = nn.ReLU() if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class ChannelPool(nn.Layer):
def forward(self, x):
return paddle.concat(
(paddle.max(x, 1).unsqueeze(1), paddle.mean(x, 1).unsqueeze(1)),
axis=1)
class SpatialGate(nn.Layer):
def __init__(self):
super(SpatialGate, self).__init__()
kernel_size = 7
self.compress = ChannelPool()
self.spatial = BasicConv(
2,
1,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
relu=False)
def forward(self, x):
x_compress = self.compress(x)
x_out = self.spatial(x_compress)
scale = F.sigmoid(x_out) # broadcasting
return x * scale
def fill_up_weights(up):
weight = up.weight.numpy()
f = math.ceil(weight.shape[2] / 2)
c = (2 * f - 1 - f % 2) / (2. * f)
for i in range(weight.shape[2]):
for j in range(weight.shape[3]):
weight[0, 0, i, j] = \
(1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c))
for c in range(1, weight.shape[0]):
weight[c, 0, :, :] = weight[0, 0, :, :]
up.weight.set_value(weight)
class IDAUp(nn.Layer):
def __init__(self, ch_ins, ch_out, up_strides, dcn_v2=True):
super(IDAUp, self).__init__()
for i in range(1, len(ch_ins)):
ch_in = ch_ins[i]
up_s = int(up_strides[i])
fan_in = ch_in * 3 * 3
stdv = 1. / math.sqrt(fan_in)
proj = nn.Sequential(
ConvNormLayer(
ch_in,
ch_out,
filter_size=3,
stride=1,
use_dcn=dcn_v2,
bias_on=dcn_v2,
norm_decay=None,
dcn_lr_scale=1.,
dcn_regularizer=None,
initializer=Uniform(-stdv, stdv)),
nn.ReLU())
node = nn.Sequential(
ConvNormLayer(
ch_out,
ch_out,
filter_size=3,
stride=1,
use_dcn=dcn_v2,
bias_on=dcn_v2,
norm_decay=None,
dcn_lr_scale=1.,
dcn_regularizer=None,
initializer=Uniform(-stdv, stdv)),
nn.ReLU())
kernel_size = up_s * 2
fan_in = ch_out * kernel_size * kernel_size
stdv = 1. / math.sqrt(fan_in)
up = nn.Conv2DTranspose(
ch_out,
ch_out,
kernel_size=up_s * 2,
stride=up_s,
padding=up_s // 2,
groups=ch_out,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=False)
fill_up_weights(up)
setattr(self, 'proj_' + str(i), proj)
setattr(self, 'up_' + str(i), up)
setattr(self, 'node_' + str(i), node)
def forward(self, inputs, start_level, end_level):
for i in range(start_level + 1, end_level):
upsample = getattr(self, 'up_' + str(i - start_level))
project = getattr(self, 'proj_' + str(i - start_level))
inputs[i] = project(inputs[i])
inputs[i] = upsample(inputs[i])
node = getattr(self, 'node_' + str(i - start_level))
inputs[i] = node(paddle.add(inputs[i], inputs[i - 1]))
return inputs
class DLAUp(nn.Layer):
def __init__(self, start_level, channels, scales, ch_in=None, dcn_v2=True):
super(DLAUp, self).__init__()
self.start_level = start_level
if ch_in is None:
ch_in = channels
self.channels = channels
channels = list(channels)
scales = np.array(scales, dtype=int)
for i in range(len(channels) - 1):
j = -i - 2
setattr(
self,
'ida_{}'.format(i),
IDAUp(
ch_in[j:],
channels[j],
scales[j:] // scales[j],
dcn_v2=dcn_v2))
scales[j + 1:] = scales[j]
ch_in[j + 1:] = [channels[j] for _ in channels[j + 1:]]
def forward(self, inputs):
out = [inputs[-1]] # start with 32
for i in range(len(inputs) - self.start_level - 1):
ida = getattr(self, 'ida_{}'.format(i))
outputs = ida(inputs, len(inputs) - i - 2, len(inputs))
out.insert(0, outputs[-1])
return out
@register
@serializable
class CenterNetDLAFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone.
[16, 32, 64, 128, 256, 512] by default, means the channels of DLA-34
down_ratio (int): the down ratio from images to heatmap, 4 by default
last_level (int): the last level of input feature fed into the upsamplng block
out_channel (int): the channel of the output feature, 0 by default means
the channel of the input feature whose down ratio is `down_ratio`
first_level (None): the first level of input feature fed into the upsamplng block.
if None, the first level stands for logs(down_ratio)
dcn_v2 (bool): whether use the DCNv2, True by default
with_sge (bool): whether use SGE attention, False by default
"""
def __init__(self,
in_channels,
down_ratio=4,
last_level=5,
out_channel=0,
first_level=None,
dcn_v2=True,
with_sge=False):
super(CenterNetDLAFPN, self).__init__()
self.first_level = int(np.log2(
down_ratio)) if first_level is None else first_level
assert self.first_level >= 0, "first level in CenterNetDLAFPN should be greater or equal to 0, but received {}".format(
self.first_level)
self.down_ratio = down_ratio
self.last_level = last_level
scales = [2**i for i in range(len(in_channels[self.first_level:]))]
self.dla_up = DLAUp(
self.first_level,
in_channels[self.first_level:],
scales,
dcn_v2=dcn_v2)
self.out_channel = out_channel
if out_channel == 0:
self.out_channel = in_channels[self.first_level]
self.ida_up = IDAUp(
in_channels[self.first_level:self.last_level],
self.out_channel,
[2**i for i in range(self.last_level - self.first_level)],
dcn_v2=dcn_v2)
self.with_sge = with_sge
if self.with_sge:
self.sge_attention = SpatialGate()
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape]}
def forward(self, body_feats):
inputs = [body_feats[i] for i in range(len(body_feats))]
dla_up_feats = self.dla_up(inputs)
ida_up_feats = []
for i in range(self.last_level - self.first_level):
ida_up_feats.append(dla_up_feats[i].clone())
self.ida_up(ida_up_feats, 0, len(ida_up_feats))
feat = ida_up_feats[-1]
if self.with_sge:
feat = self.sge_attention(feat)
if self.down_ratio != 4:
feat = F.interpolate(
feat,
scale_factor=self.down_ratio // 4,
mode="bilinear",
align_corners=True)
return feat
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, stride=self.down_ratio)]
class TransitionUp(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
def forward(self, x, skip):
w, h = skip.shape[2], skip.shape[3]
out = F.interpolate(x, size=(w, h), mode="bilinear", align_corners=True)
out = paddle.concat([out, skip], 1)
return out
@register
@serializable
class CenterNetHarDNetFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone.
[96, 214, 458, 784] by default, means the channels of HarDNet85
num_layers (int): HarDNet laters, 85 by default
down_ratio (int): the down ratio from images to heatmap, 4 by default
first_level (int|None): the first level of input feature fed into the upsamplng block.
if None, the first level stands for logs(down_ratio) - 1
last_level (int): the last level of input feature fed into the upsamplng block
out_channel (int): the channel of the output feature, 0 by default means
the channel of the input feature whose down ratio is `down_ratio`
"""
def __init__(self,
in_channels,
num_layers=85,
down_ratio=4,
first_level=None,
last_level=4,
out_channel=0):
super(CenterNetHarDNetFPN, self).__init__()
self.first_level = int(np.log2(
down_ratio)) - 1 if first_level is None else first_level
assert self.first_level >= 0, "first level in CenterNetDLAFPN should be greater or equal to 0, but received {}".format(
self.first_level)
self.down_ratio = down_ratio
self.last_level = last_level
self.last_pool = nn.AvgPool2D(kernel_size=2, stride=2)
assert num_layers in [68, 85], "HarDNet-{} not support.".format(
num_layers)
if num_layers == 85:
self.last_proj = ConvLayer(784, 256, kernel_size=1)
self.last_blk = HarDBlock(768, 80, 1.7, 8)
self.skip_nodes = [1, 3, 8, 13]
self.SC = [32, 32, 0]
gr = [64, 48, 28]
layers = [8, 8, 4]
ch_list2 = [224 + self.SC[0], 160 + self.SC[1], 96 + self.SC[2]]
channels = [96, 214, 458, 784]
self.skip_lv = 3
elif num_layers == 68:
self.last_proj = ConvLayer(654, 192, kernel_size=1)
self.last_blk = HarDBlock(576, 72, 1.7, 8)
self.skip_nodes = [1, 3, 8, 11]
self.SC = [32, 32, 0]
gr = [48, 32, 20]
layers = [8, 8, 4]
ch_list2 = [224 + self.SC[0], 96 + self.SC[1], 64 + self.SC[2]]
channels = [64, 124, 328, 654]
self.skip_lv = 2
self.transUpBlocks = nn.LayerList([])
self.denseBlocksUp = nn.LayerList([])
self.conv1x1_up = nn.LayerList([])
self.avg9x9 = nn.AvgPool2D(kernel_size=(9, 9), stride=1, padding=(4, 4))
prev_ch = self.last_blk.get_out_ch()
for i in range(3):
skip_ch = channels[3 - i]
self.transUpBlocks.append(TransitionUp(prev_ch, prev_ch))
if i < self.skip_lv:
cur_ch = prev_ch + skip_ch
else:
cur_ch = prev_ch
self.conv1x1_up.append(
ConvLayer(
cur_ch, ch_list2[i], kernel_size=1))
cur_ch = ch_list2[i]
cur_ch -= self.SC[i]
cur_ch *= 3
blk = HarDBlock(cur_ch, gr[i], 1.7, layers[i])
self.denseBlocksUp.append(blk)
prev_ch = blk.get_out_ch()
prev_ch += self.SC[0] + self.SC[1] + self.SC[2]
self.out_channel = prev_ch
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape]}
def forward(self, body_feats):
x = body_feats[-1]
x_sc = []
x = self.last_proj(x)
x = self.last_pool(x)
x2 = self.avg9x9(x)
x3 = x / (x.sum((2, 3), keepdim=True) + 0.1)
x = paddle.concat([x, x2, x3], 1)
x = self.last_blk(x)
for i in range(3):
skip_x = body_feats[3 - i]
x_up = self.transUpBlocks[i](x, skip_x)
x_ch = self.conv1x1_up[i](x_up)
if self.SC[i] > 0:
end = x_ch.shape[1]
new_st = end - self.SC[i]
x_sc.append(x_ch[:, new_st:, :, :])
x_ch = x_ch[:, :new_st, :, :]
x2 = self.avg9x9(x_ch)
x3 = x_ch / (x_ch.sum((2, 3), keepdim=True) + 0.1)
x_new = paddle.concat([x_ch, x2, x3], 1)
x = self.denseBlocksUp[i](x_new)
scs = [x]
for i in range(3):
if self.SC[i] > 0:
scs.insert(
0,
F.interpolate(
x_sc[i],
size=(x.shape[2], x.shape[3]),
mode="bilinear",
align_corners=True))
neck_feat = paddle.concat(scs, 1)
return neck_feat
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, stride=self.down_ratio)]