diff --git a/python/tests/ops/test_floor_op.py b/python/tests/ops/test_floor_op.py new file mode 100644 index 0000000000..f454eec840 --- /dev/null +++ b/python/tests/ops/test_floor_op.py @@ -0,0 +1,109 @@ +#!/usr/bin/env python3 + +# Copyright (c) 2023 CINN Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +from op_test import OpTest, OpTestTool +from op_test_helper import TestCaseHelper +import paddle +import cinn +from cinn.frontend import * +from cinn.common import * + + +@OpTestTool.skip_if(not is_compiled_with_cuda(), + "x86 test will be skipped due to timeout.") +class TestFloorOp(OpTest): + def setUp(self): + print(f"\nRunning {self.__class__.__name__}: {self.case}") + self.prepare_inputs() + + def prepare_inputs(self): + self.x_np = self.random( + shape=self.case["x_shape"], + dtype=self.case["x_dtype"], + low=-1000.0, + high=1000.0) + + def build_paddle_program(self, target): + x = paddle.to_tensor(self.x_np, stop_gradient=True) + out = paddle.floor(x) + self.paddle_outputs = [out] + + def build_cinn_program(self, target): + builder = NetBuilder("unary_elementwise_test") + x = builder.create_input( + self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], + "x") + out = builder.floor(x) + prog = builder.build() + res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) + + self.cinn_outputs = [res[0]] + + def test_check_results(self): + self.check_outputs_and_grads() + + +class TestFloorOpShape(TestCaseHelper): + def init_attrs(self): + self.class_name = "TestFloorOpShape" + self.cls = TestFloorOp + self.inputs = [{ + "x_shape": [1], + }, { + "x_shape": [1024], + }, { + "x_shape": [1, 2048], + }, { + "x_shape": [32, 64], + }, { + "x_shape": [1, 1, 1], + }, { + "x_shape": [16, 8, 4, 2], + }, { + "x_shape": [16, 8, 4, 2, 1], + }] + self.dtypes = [{ + "x_dtype": "float32", + }] + self.attrs = [] + + +class TestFloorOpDtype(TestCaseHelper): + def init_attrs(self): + self.class_name = "TestFloorOpDtype" + self.cls = TestFloorOp + self.inputs = [{ + "x_shape": [32, 64], + }] + self.dtypes = [ + { + "x_dtype": "float16", + "max_relative_error": 1e-3 + }, + { + "x_dtype": "float32", + }, + { + "x_dtype": "float64", + }, + ] + self.attrs = [] + + +if __name__ == "__main__": + TestFloorOpShape().run() + TestFloorOpDtype().run()