-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiff_2D_lin.jl
103 lines (98 loc) · 4.24 KB
/
diff_2D_lin.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
const use_return = haskey(ENV, "USE_RETURN" ) ? parse(Bool, ENV["USE_RETURN"] ) : false
const USE_GPU = haskey(ENV, "USE_GPU" ) ? parse(Bool, ENV["USE_GPU"] ) : false
const do_viz = haskey(ENV, "DO_VIZ" ) ? parse(Bool, ENV["DO_VIZ"] ) : true
const do_save = haskey(ENV, "DO_SAVE" ) ? parse(Bool, ENV["DO_SAVE"] ) : false
const do_save_viz = haskey(ENV, "DO_SAVE_VIZ") ? parse(Bool, ENV["DO_SAVE_VIZ"]) : false
const nx = haskey(ENV, "NX" ) ? parse(Int , ENV["NX"] ) : 512
const ny = haskey(ENV, "NY" ) ? parse(Int , ENV["NY"] ) : 512
###
using ParallelStencil
using ParallelStencil.FiniteDifferences2D
@static if USE_GPU
@init_parallel_stencil(CUDA, Float64, 2)
else
@init_parallel_stencil(Threads, Float64, 2)
end
using Plots, Printf, LinearAlgebra, MAT
@parallel function compute_flux!(qHx, qHy, qHx2, qHy2, H, D, θr_dτ, dx, dy)
@all(qHx) = (@all(qHx) * θr_dτ - D * @d_xi(H) / dx) / (1.0 + θr_dτ)
@all(qHy) = (@all(qHy) * θr_dτ - D * @d_yi(H) / dy) / (1.0 + θr_dτ)
@all(qHx2) = -D * @d_xi(H) / dx
@all(qHy2) = -D * @d_yi(H) / dy
return
end
@parallel function compute_update!(H, Hold, qHx, qHy, dτ_ρ, dt, dx, dy)
@inn(H) = (@inn(H) + dτ_ρ * (@inn(Hold) / dt - (@d_xa(qHx) / dx + @d_ya(qHy) / dy))) / (1.0 + dτ_ρ / dt)
return
end
@parallel function check_res!(ResH, H, Hold, qHx2, qHy2, dt, dx, dy)
@all(ResH) = -(@inn(H) - @inn(Hold)) / dt - (@d_xa(qHx2) / dx + @d_ya(qHy2) / dy)
return
end
@views function diffusion_2D_()
# Physics
lx, ly = 10.0, 10.0 # domain size
D = 1.0 # diffusion coefficient
ttot = 1.0 # total simulation time
dt = 0.2 # physical time step
# Numerics
# nx, ny = 2*256, 2*256 # numerical grid resolution
tol = 1e-8 # tolerance
itMax = 1e5 # max number of iterations
nout = 10 # tol check
CFL = 1/sqrt(2) # CFL number
# Derived numerics
dx, dy = lx / nx, ly / ny # grid size
Vpdτ = CFL * min(dx, dy)
Re = π + sqrt(π^2 + (max(lx, ly)^2 / D / dt)) # Numerical Reynolds number
θr_dτ = max(lx, ly) / Vpdτ / Re
dτ_ρ = Vpdτ * max(lx, ly) / D / Re
xc, yc = LinRange(dx/2, lx - dx/2, nx), LinRange(dy/2, ly - dy/2, ny)
# Array allocation
qHx = @zeros(nx-1, ny-2)
qHy = @zeros(nx-2, ny-1)
qHx2 = @zeros(nx-1, ny-2)
qHy2 = @zeros(nx-2, ny-1)
ResH = @zeros(nx-2, ny-2)
# Initial condition
H0 = Data.Array(exp.(-(xc .- lx/2).^2 .- ((yc .- ly/2)').^2))
Hold = @ones(nx,ny) .* H0
H = @ones(nx,ny) .* H0
t = 0.0; it = 0; ittot = 0; nt = Int(ceil(ttot/dt))
# Physical time loop
while it < nt
iter = 0; err = 2 * tol
# Pseudo-transient iteration
while err > tol && iter < itMax
@parallel compute_flux!(qHx, qHy, qHx2, qHy2, H, D, θr_dτ, dx, dy)
@parallel compute_update!(H, Hold, qHx, qHy, dτ_ρ, dt, dx, dy)
iter += 1
if iter % nout == 0
@parallel check_res!(ResH, H, Hold, qHx2, qHy2, dt, dx, dy)
err = norm(ResH) / sqrt(length(ResH))
end
end
ittot += iter; it += 1; t += dt
Hold .= H
if isnan(err) error("NaN") end
end
@printf("Total time = %1.2f, time steps = %d, nx = %d, iterations tot = %d \n", round(ttot, sigdigits=2), it, nx, ittot)
# Visualise
if do_viz display(heatmap(xc, yc, Array(H'), aspect_ratio=1, framestyle=:box, xlims=(xc[1], xc[end]), ylims=(yc[1], yc[end]), xlabel="lx", ylabel="ly", c=:viridis, clims=(0, 1), title="linear diffusion (nt=$it, iters=$ittot)")) end
if do_save
!ispath("../output") && mkdir("../output")
open("../output/out_diff_2D_lin.txt","a") do io
println(io, "$(nx) $(ny) $(ittot) $(nt)")
end
end
if do_save_viz
!ispath("../out_visu") && mkdir("../out_visu")
matwrite("../out_visu/diff_2D_lin.mat", Dict("H_2D"=> Array(H), "xc_2D"=> Array(xc), "yc_2D"=> Array(yc)); compress = true)
end
return xc, yc, H
end
if use_return
xc, yc, H = diffusion_2D_();
else
diffusion_2D = begin diffusion_2D_(); return; end
end