-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test.py
210 lines (185 loc) · 10.1 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
""" Training and testing of the model
"""
import os
import numpy as np
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score
import torch
import torch.nn.functional as F
from model import HTML
import random
cuda = True if torch.cuda.is_available() else False
def seed_it(seed):
random.seed(seed)
os.environ["PYTHONSEED"] = str(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
torch.manual_seed(seed)
seed_it(40)
def one_hot_tensor(y, num_dim):
y_onehot = torch.zeros(y.shape[0], num_dim)
y_onehot.scatter_(1, y.view(-1,1), 1)
return y_onehot
def prepare_trte_data(data_folder,uni=True,dual=True,triple=True):
num_view = 1
labels_tr = np.loadtxt(os.path.join(data_folder, "labels_tr.csv"), delimiter=',')
labels_te = np.loadtxt(os.path.join(data_folder, "labels_te.csv"), delimiter=',')
labels_tr = labels_tr.astype(int)
labels_te = labels_te.astype(int)
data_tr_list = []
data_te_list = []
for i in range(1, num_view+1):
data_tr_list.append(np.loadtxt(os.path.join(data_folder, str(i)+"_tr.csv"), dtype=np.float64,delimiter=','))
data_te_list.append(np.loadtxt(os.path.join(data_folder, str(i)+"_te.csv"), dtype=np.float64,delimiter=','))
eps = 1e-10
X_train_min = [np.min(data_tr_list[i], axis=0, keepdims=True) for i in range(len(data_tr_list))]
data_tr_list = [data_tr_list[i] - np.tile(X_train_min[i], [data_tr_list[i].shape[0], 1]) for i in range(len(data_tr_list))]
data_te_list = [data_te_list[i] - np.tile(X_train_min[i], [data_te_list[i].shape[0], 1]) for i in range(len(data_tr_list))]
X_train_max = [np.max(data_tr_list[i], axis=0, keepdims=True) + eps for i in range(len(data_tr_list))]
data_tr_list = [data_tr_list[i] / np.tile(X_train_max[i], [data_tr_list[i].shape[0], 1]) for i in range(len(data_tr_list))]
data_te_list = [data_te_list[i] / np.tile(X_train_max[i], [data_te_list[i].shape[0], 1]) for i in range(len(data_tr_list))]
num_tr = data_tr_list[0].shape[0]
num_te = data_te_list[0].shape[0]
data_mat_list = []
for i in range(num_view):
data_mat_list.append(np.concatenate((data_tr_list[i], data_te_list[i]), axis=0))
data_tensor_list = []
for i in range(len(data_mat_list)):
data_tensor_list.append(torch.FloatTensor(data_mat_list[i]))
if cuda:
data_tensor_list[i] = data_tensor_list[i].cuda()
idx_dict = {}
idx_dict["tr"] = list(range(num_tr))
idx_dict["te"] = list(range(num_tr, (num_tr+num_te)))
data_train_list = []
data_all_list = []
data_test_list = []
if uni:
for i in range(len(data_tensor_list)):
data_train_list.append(data_tensor_list[i][idx_dict["tr"]].clone())
data_all_list.append(torch.cat((data_tensor_list[i][idx_dict["tr"]].clone(),
data_tensor_list[i][idx_dict["te"]].clone()),0))
data_test_list.append(data_tensor_list[i][idx_dict["te"]].clone())
if dual and num_view>=2:
for i in range(len(data_tensor_list)):
for j in range(i+1,len(data_tensor_list)):
data_train_list.append(torch.cat([data_tensor_list[i][idx_dict["tr"]].clone(),data_tensor_list[j][idx_dict["tr"]].clone()],1))
data_test_list.append(torch.cat([data_tensor_list[i][idx_dict["te"]].clone(),data_tensor_list[j][idx_dict["te"]].clone()],1))
data_all_list.append(torch.cat((torch.cat([data_tensor_list[i][idx_dict["tr"]].clone(),data_tensor_list[j][idx_dict["tr"]].clone()],1),
torch.cat([data_tensor_list[i][idx_dict["te"]].clone(),data_tensor_list[j][idx_dict["te"]].clone()],1)),0))
if triple and num_view>=3:
data_train_list.append(torch.cat([data_tensor_list[0][idx_dict["tr"]].clone(),data_tensor_list[1][idx_dict["tr"]].clone(),data_tensor_list[2][idx_dict["tr"]].clone()],1))
data_test_list.append(torch.cat([data_tensor_list[0][idx_dict["te"]].clone(),data_tensor_list[1][idx_dict["te"]].clone(),data_tensor_list[2][idx_dict["te"]].clone()],1))
data_all_list.append(torch.cat((torch.cat([data_tensor_list[0][idx_dict["tr"]].clone(),data_tensor_list[1][idx_dict["tr"]].clone(),data_tensor_list[2][idx_dict["tr"]].clone()],1),
torch.cat([data_tensor_list[0][idx_dict["te"]].clone(),data_tensor_list[1][idx_dict["te"]].clone(),data_tensor_list[2][idx_dict["te"]].clone()],1)),0))
labels = np.concatenate((labels_tr, labels_te))
return data_train_list, data_test_list, idx_dict, labels
def train_epoch(data_list, label, model, optimizer):
model.train()
optimizer.zero_grad()
loss, _, uncertainty = model(data_list, label)
loss = torch.mean(loss)
loss.backward()
optimizer.step()
def test_epoch(data_list, model):
model.eval()
with torch.no_grad():
logit,uncertainty = model.infer(data_list)
prob = F.softmax(logit, dim=1).data.cpu().numpy()
return prob,uncertainty
def save_checkpoint(model, checkpoint_path, filename="checkpoint.pt"):
os.makedirs(checkpoint_path, exist_ok=True)
filename = os.path.join(checkpoint_path, filename)
torch.save(model, filename)
def load_checkpoint(model, path):
best_checkpoint = torch.load(path)
model.load_state_dict(best_checkpoint)
def computeAUROC(dataGT, dataPRED, classCount=5):
outAUROC = []
datanpGT = dataGT
datanpPRED = dataPRED
dataIndex=torch.argmax(dataGT,dim=1)
for i in range(classCount):
if i in dataIndex:
outAUROC.append(roc_auc_score(datanpGT[:, i], datanpPRED[:, i]))
return outAUROC
def train(data_folder, modelpath, testonly,uni,dual,triple):
test_inverval = 1
if 'BRCA' in data_folder:
hidden_dim = [1000]
num_epoch = 2500
lr = 2e-4
num_class = 5
elif 'ROSMAP' in data_folder:
hidden_dim = [500]
num_epoch = 1500
lr = 1e-4
num_class = 2
elif 'LGG' in data_folder:
hidden_dim = [500]
num_epoch = 1500
lr = 1e-4
num_class = 2
elif 'KIPAN' in data_folder:
hidden_dim = [500]
num_epoch = 500
lr = 1e-4
num_class = 3
data_tr_list, data_test_list, trte_idx, labels_trte = prepare_trte_data(data_folder,uni,dual,triple)
labels_tr_tensor = torch.LongTensor(labels_trte[trte_idx["tr"]])
onehot_labels_tr_tensor = one_hot_tensor(labels_tr_tensor, num_class)
labels_tr_tensor = labels_tr_tensor.cuda()
onehot_labels_tr_tensor = onehot_labels_tr_tensor.cuda()
dim_list = [x.shape[1] for x in data_tr_list]
model = HTML(dim_list, hidden_dim, num_class, dropout=0.5)
model.cuda()
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=150, eta_min=0)
labels=torch.tensor([])
for i in labels_trte[trte_idx["te"]]:
_=[0]*(max(labels_trte[trte_idx["te"]])+1)
_[i]=1
labels=torch.cat([labels,torch.tensor([_])],dim=0)
if testonly:
load_checkpoint(model, os.path.join(modelpath, data_folder[11:],"checkpoint.pt"))
te_prob,uncertainty = test_epoch(data_test_list, model)
if num_class == 2:
print("Test ACC: {:.5f}".format(accuracy_score(labels_trte[trte_idx["te"]], te_prob.argmax(1))*100))
print("Test F1: {:.5f}".format(f1_score(labels_trte[trte_idx["te"]], te_prob.argmax(1))*100))
print("Test AUC: {:.5f}".format(roc_auc_score(labels_trte[trte_idx["te"]], te_prob[:,1])*100))
print("Test Uncertainty:{:.5f}".format(np.mean(uncertainty)*100))
else:
print("Test ACC: {:.5f}".format(accuracy_score(labels_trte[trte_idx["te"]], te_prob.argmax(1))*100))
print("Test F1: {:.5f}".format(f1_score(labels_trte[trte_idx["te"]], te_prob.argmax(1), average='macro')*100))
print("Test average AUC: {:.5f}".format(np.mean(computeAUROC(labels, te_prob,num_class))*100))
print("Test Uncertainty:{:.5f}".format(np.mean(uncertainty)*100))
else:
print("\nTraining...")
best_result={"acc":0}
for epoch in range(num_epoch+1):
train_epoch(data_tr_list, labels_tr_tensor, model, optimizer)
scheduler.step()
if epoch % test_inverval == 0:
te_prob,uncertainty = test_epoch(data_test_list, model)
print("\nTrain: Epoch {:d}".format(epoch))
if num_class == 2:
print("Train ACC: {:.5f}".format(accuracy_score(labels_trte[trte_idx["te"]], te_prob.argmax(1))*100))
print("Train F1: {:.5f}".format(f1_score(labels_trte[trte_idx["te"]], te_prob.argmax(1))*100))
print("Train AUC: {:.5f}".format(roc_auc_score(labels_trte[trte_idx["te"]], te_prob[:,1])*100))
print("Train Uncertainty:{:.5f}".format(np.mean(uncertainty)*100))
else:
print("Train ACC: {:.5f}".format(accuracy_score(labels_trte[trte_idx["te"]], te_prob.argmax(1))*100))
print("Train F1: {:.5f}".format(f1_score(labels_trte[trte_idx["te"]], te_prob.argmax(1), average='macro')*100))
print("Train average AUC: {:.5f}".format(np.mean(computeAUROC(labels, te_prob,num_class))*100))
print("Train Uncertainty:{:.5f}".format(np.mean(uncertainty)*100))
if accuracy_score(labels_trte[trte_idx["te"]], te_prob.argmax(1))*100>=best_result["acc"]:
best_result["acc"]=accuracy_score(labels_trte[trte_idx["te"]], te_prob.argmax(1))*100
best_result["f1-macro"]=f1_score(labels_trte[trte_idx["te"]], te_prob.argmax(1), average='macro')*100
best_result["f1-weighted"]=f1_score(labels_trte[trte_idx["te"]], te_prob.argmax(1), average='weighted')*100
best_result["uncertainty"]=np.mean(uncertainty)*100
save_checkpoint(model.state_dict(), os.path.join(modelpath, data_folder[11:]))
print(best_result)
return best_result