-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
86 lines (69 loc) · 3.55 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
""" Componets of the model
"""
import torch.nn as nn
import torch
import torch.nn.functional as F
def xavier_init(m):
if type(m) == nn.Linear:
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
m.bias.data.fill_(0.0)
class LinearLayer(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.clf = nn.Sequential(nn.Linear(in_dim, out_dim))
self.clf.apply(xavier_init)
def forward(self, x):
x = self.clf(x)
return x
class HTMLModel(nn.Module):
def __init__(self, in_dim, hidden_dim, num_class, dropout):
super().__init__()
self.views = len(in_dim)
self.classes = num_class+1
self.dropout_rate = dropout
self.FeatureInforEncoder = nn.ModuleList([LinearLayer(in_dim[view], in_dim[view]) for view in range(self.views)])
self.ModalityConfidenceLayer = nn.ModuleList([LinearLayer(hidden_dim[0], 1) for _ in range(self.views)])
self.ModalityClassifierLayer = nn.ModuleList([LinearLayer(hidden_dim[0], self.classes) for _ in range(self.views)])
self.FeatureEncoder = nn.ModuleList([LinearLayer(in_dim[view], hidden_dim[0]) for view in range(self.views)])
self.dropout = nn.Dropout(p=self.dropout_rate)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.leaky_relu = nn.LeakyReLU()
def forward(self, data_list, label=None, infer=False):
criterion = torch.nn.CrossEntropyLoss(reduction='none')
FeatureInfo, feature, Prediction, MCC = dict(), dict(), dict(), dict()
for view in range(self.views):
data_list[view]=data_list[view].squeeze(0)
FeatureInfo[view] = torch.sigmoid(self.dropout(
self.FeatureInforEncoder[view](data_list[view])))
feature[view] = data_list[view] * FeatureInfo[view]
# Encoder
feature[view] = self.FeatureEncoder[view](feature[view])
# feature[view] = self.relu(feature[view])
feature[view] = self.dropout(feature[view])
# Classifier
Prediction[view] = self.dropout(self.ModalityClassifierLayer[view](feature[view]).squeeze(0))
# Modality Confidence Calculation
MCC[view] = torch.sigmoid(self.ModalityConfidenceLayer[view](feature[view]))
Predictions = torch.ones(Prediction[0].shape).cuda()
MMLoss = 0
for view in range(self.views):
# l_0 regularization for high sparsity
MMLoss = MMLoss+torch.mean(FeatureInfo[view])
# add up the corresponding probability of each element
Predictions = torch.add(Predictions, F.softmax(Prediction[view], dim=1) * MCC[view])
# add the uncertainty probability
Predictions[:, -1] = Predictions[:, -1]+(torch.sub(F.softmax(Prediction[view], dim=1)[:, -1], torch.mul(
F.softmax(Prediction[view], dim=1)[:, -1], F.softmax(Prediction[view], dim=1)[:, -1]))*2)*MCC[view].squeeze(1)
MMlogit = F.softmax(Predictions[:, :-1], dim=1)
# l_cls+l_uncertain
uncertainty = torch.div(Predictions[:, -1], torch.max(Predictions, dim=1)[0])
if infer:
return MMlogit, uncertainty.cpu().detach().numpy()
MMLoss = MMLoss+torch.mean(criterion(Predictions[:, :-1], label))
MMLoss = MMLoss+torch.mean(uncertainty)
return MMLoss, MMlogit, uncertainty.cpu().detach().numpy()
def infer(self, data_list):
MMlogit,uncertainty = self.forward(data_list, infer=True)
return MMlogit,uncertainty